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Zusammenfassung

Elektronisches Abstimmen ist seit geraumer Zeit in aller Munde. In der kryptografischen
Forschung bietet das elektronische Abstimmen ein Paradebeispiel um verschiedenste Si-
cherheitsansätze anschaulich zu evaluieren. In der Praxis führen erste Länder Abstimmun-
gen mit dem elektronischen Stimmkanal auf nationaler Ebene durch. In technologischer
Hinsicht ist der Rückgrat der Abstimmungen oft ein proprietäres System, welches das
Nachvollziehen der Stimmergebnisse bei Unklarheiten für den einzelnen Wähler erschwert.
Jedoch ist in den letzten Jahren mit der Blockchain ein neues technologisches Instru-
ment soweit entwickelt worden, sodass erste Anwendungen auf seine vielversprechenden
Eigenschaften vertrauen: eine garantierte Unveränderbarkeit einmal geschriebener Werte
sowie die dezentrale Betriebsweise. Das Ziel dieser Arbeit besteht darin, diese Bereiche
zusammenzuführen, um ein transparentes und sicheres Abstimmen auf dem elektroni-
schem Stimmkanal zu ermöglichen. Das entwickelte System speichert dabei die abgegebe-
nen Stimmen in verschlüsselter Form mit einem zugehörigen Beweis für ihre Korrektheit
auf der Ethereum Blockchain. Eine Serverkomponente übernimmt dabei die Verschlüsse-
lung der Stimmen, das Berechnen des dazugehörenden Beweises und schlussendlich auch
das Berechnen des Abstimmungsresultats. Für die Abstimmungsverwaltung auf Seiten
der Administratoren sowie die Stimmabgabe seitens der Wähler sind weiter zwei unter-
schiedliche Browser-Applikationen entwickelt worden. Durch das transparente Speichern
der Stimmen auf der Blockchain, können einerseits Aufsichtsparteien die korrekte Aus-
zählung überprüfen, andererseits ermöglicht dies jedem Stimmbürger seine verschlüsselte
Stimme in der totalen Menge aller Stimmen wiederzufinden, sowie die Unveränderlichkeit
dieser zu validieren.
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Abstract

Since many years, electronic voting is a common topic in cryptographic research. Elec-
tronic voting systems offer an optimal way to evaluate security attributes. In practice,
some countries have started to use an electronic channel for nationwide elections and
votes. Often, the technological backbone of these electronic systems is proprietary soft-
ware. Hence, such voting systems lack transparency from a voter’s perspective. In recent
years, the blockchain technology has been actively developed and matured to a level where
first applications build on its promising features: guaranteed immutability of written val-
ues as well as its fully decentralized architecture. This work focuses on bringing these two
areas together, working towards a transparent and secure voting system. Once submitted,
encrypted votes are stored on the blockchain, along with evidence proving their validity.
The architecture consists of multiple entities. Whereas a server component encrypts the
votes and generates a corresponding proof, two distinct browser applications allow voting
authorities to administer the vote and voters to submit their choices. The correctness of
the voting result can eventually be retraced by any supervisory body. This is possible due
to the transparent persistence of each vote on the blockchain. Further, this allows each
voter to locate his own vote in the total set of submitted ones and further enables him to
verify the immutability of his vote.
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Chapter 1

Introduction

Electronic voting schemes are widely researched, covering many different areas from cryp-
tography, security, usability and even consider legal and social aspects [4]. The main
technical challenge in the design of electronic voting systems is to achieve privacy and
verifiability, ultimately conflicting properties. In simple terms, privacy should assure that
a ballot can not be traced back to the voter, but then again, verifiability requires that a
voter can check that a ballot was indeed casted, recorded and counted as intended [5]. In
recent years, research further revised the notions of privacy and verifiability. Thus, the
resulting refinement of these properties led to advances and development of cryptographic
building blocks. Still, practically implementing an electronic voting scheme is complex,
especially while addressing nation-wide electoral processes in which the trust in govern-
ments and democracy is at stake. In recent years, blockchains have gained attention on a
global scale. These distributed ledgers are very interesting in the context that they pro-
vide a fully decentralized, tamper-proof infrastructure to execute code and store data [6].
Electoral processes should not depend on trust but rather produce substantial evidence
that can be individually and universally verified [4]. Instead of relying on central author-
ities, evidence can be generated and stored by such a fully decentralized infrastructure.
Consequently, this work aims at offering a blockchain-enabled electronic voting system
that satisfies a limited level of privacy and verifiability.

1.1 Motivation and Description of Work

There is only few research in combining electronic voting with distributed ledgers. Most
implemented voting systems rely on trusted centralized client-server architectures with
single points of failures. The goal of this work is to use a private proof-of-authority
blockchain as a public bulletin board and use smart contracts to encrypt, collect and
verify the ballots. The system should achieve an acceptable level of privacy, verifiability
and auditability under certain assumptions. In order to do that, homomorphic encryption
will be used as primary cryptographic primitive. The following work describes the steps
that were taken to achieve this objective. It further outlines the final implementation and
required theoretical building blocks to engineer the final architecture which was evaluated

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Provotum logotype

in a small pilot voting. The name of the system in this work is Provotum and the logo is
displayed in Figure 1.1. All the code referenced in this work is published with the Apache
License 2.0 and freely available on GitHub 1.

1.2 Thesis Outline

In chapter 2, the background and related work is denoted. Then, in chapter 3, the
architecture of the proposed system is described in detail. Subsequently in chapter 4, the
voting process is described. Chapter 5 evaluates the proposed Provotum system. Finally,
this work concludes in Chapter 6.

1https://github.com/provotum

https://github.com/provotum


Chapter 2

Background and Related Work

Voting schemes are an actively researched and very broad field. Prior research covers
various areas, thus to get an understanding of the most important properties and building
blocks, it is crucial to use surveys as a first starting point [4] [7] [25] [40].

2.1 Related Work

Most research in the field of secret-ballot voting schemes is very theoretical in nature.
The most important notions of privacy have been further separated into ballot-secrecy,
receipt-freeness, coercion-resistance and everlasting privacy [2]. One of the most promi-
nent methods to achieve privacy is homomorphic encryption, since it enables the direct
operation on encrypted data [1]. Additional methods include re-encryption, blind signa-
tures, zero-knowledge and designated verifier proofs or mixnets [25]. Naturally, secure
and private communication channels are a prerequisite of most electronic voting systems.
In the context of electronic voting, verifiability states that a voter can trace the effect
of his or her vote on the final tally [25]. In other words, verifiability assures that it
verifiable that the final tally is correct, even if parts of the voting scheme are partially
untrusted [29]. Additionally, the term end-to-end verifiability defines the three character-
istics cast-as-intended, recorded-as-cast and tallied-as-recorded [5]. Further, verifiability
can be divided into individual and universal verifiability. According to Sako and Kilian
[37], Individual verifiability is achieved if a sender can verify whether or not his message
reached the destination, but cannot determine if this is true for the other voters. Addi-
tionally, universal verifiability guarantees that it is possible to publicly verify that the tally
of the ballots is correct. These refined notions of privacy and verifiability have become
very popular to assess the functionality of electronic voting systems. A crucial part in
achieving verifiability is a tamper-proof secure public bulletin board. Verifiable systems
should be auditable in order to offer the possibility to verify proper functionality. Hence,
there is active research in ballot auditing techniques, such as Markpledge-style auditing
[24]. Due to the high variety of well-defined properties, the implementation of practical
systems poses an extremely difficult and interdisciplinary task. Prior research combined
electronic voting with decentralized ledgers, showcasing the feasibility of using Ethereum

3



4 CHAPTER 2. BACKGROUND AND RELATED WORK

Smart Contracts [30]. Finally, the challenge is to bring theoretical building blocks to-
gether to form a working piece of software that is tamper-proof and privacy-preserving
while being verifiable.

In Switzerland, many efforts were made to bring theory closer together to practice. Ad-
ditionally, the progress of electronic voting in Switzerland is driven by increased efforts
of the Federal Council. The most relevant regulations by the Federal Council were first
published in 2013 and are aligned with theoretical research, thus referring to privacy and
verifiability [13]. The first main developer is The Swiss Post. Their system is developed
as a closed-source system in partnership with Scytl. Their system is currently ceritifed
for 50% of eligible voters [43]. On the other hand, there is the radically transparent
open-source CHVote system which is developed by academic researchers and cryptogra-
phers from the University of Applied Sciences Bern [36] in collaboration with the canton
of Geneva [9]. Meeting the requirements posed by the regulatory landscape is a real
challenge for all competitors and researchers in the electronic voting market.

2.2 Regulatory landscape in Switzerland

Legal regulation sets the target boundaries for any adaption, development and future in-
tegration of electronic voting. Initiated by the Federal Council, the first serious efforts to
test electronic voting were made in 2001 by the consortium Vote Électronique. Following
that, three pilot projects were started in different cantons. The three cantons Geneva,
Zurich and Neuchâtel pioneered in testing the viability of electronic voting in real-world
elections. The canton of Geneva was the first project that was started in 2001 and is
still under development under the name CHVote [9]. The Canton of Neuchâtel initiated
a holistic approach called Guichet Unique [23]. The vision of Guichet Unique is to im-
plement a virtual office counter, offering digitalized services to its citizens and electronic
voting simply as one of many services. Due to the increased complexity, an external com-
pany called Scytl joined the project [38]. In 2015, the Canton of Neuchâtel partnered
with Scytl and The Swiss Post to implement a new generation of the Post’s electronic
voting system [42]. The canton of Zurich developed its system in a partnership with the
Swiss company Unisys. Unisys was responsible for the operation and maintenance of the
system [41]. However, the canton of Zurich discontinued the project due to operational
problems and new federal regulations [20].

These various projects helped to build up experience and knowledge in operating and
running electronic voting systems. The repeated positive assessment by the government
led to the adoption by other cantons.

In the beginning of 2014, the new Ordinance of the Federal Chancellery on Electronic
Voting (VEleS) came into effect [13]. VEleS defines how each canton is allowed to test
different prototypes of e-Voting systems. Thus, it specifies the conditions for the expansion
of the electronic voting channel in nation-wide elections. The content of VEleS is heavily
aligned with the notions of privacy and verifiability in research [19]:

• Cast-as-intended describes the ability of a voter to ensure that the casted and
encrypted vote was in fact cast as intended.
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• Recorded-as-cast verification allows the voter to review that the voting server
correctly received his vote.

• Counted-as-recorded provides auditors, as well as voters with the ability to verify
that all votes were received and correctly influenced the voting result.

In order to allow systems to work with up to 50% of all eligible voters, the system needs
to assure at least cast-as-intended verification [13]. The attributes recorded-as-cast as well
as counted-as-recorded have to be provided to license the system for participation by more
than 50% of all eligible voters [13].

In 2015 the consortium Vote Électronique was discontinued and left only two main com-
petitors in the Swiss electronic voting space: CHVote [9] and The Swiss Post [43]. Overall,
the regulatory requirements act as boundaries for the development of electronic voting sys-
tems. A constant update of regulations with regards to technological advances is necessary
to keep regulations in sync with realistic expectations towards real-world electronic voting
systems. In conclusion, electronic voting is a highly regulated topic in Switzerland. These
regulations cause long and costly pilot projects and an expensive licensing procedure. The
future will show if all cantons will use the same system or if competition will be sparked
by the spirit of cantonal federalism.

2.3 Cryptographic Fundamentals

In order to implement an electronic voting scheme, cryptographic building blocks are nec-
essary. In the following sections, the utilized cryptographic fundamentals are introduced
and explained in detail.

2.3.1 Homomorphic Encryption in the ElGamal Cryptosystem

In computing, encryption is essential to preserve confidentiality of sensitive data and in-
formation. The emergence of cloud services raises issues regarding the privacy of user
and business data. Ordinary encryption schemes cannot operate on encrypted data with-
out first decrypting it. However, the application of practical and efficient homomorphic
encryption schemes can solve these problems.

Homomorphic encryption (HE) can be described as follows:

Homomorphic encryption is a form of encryption which allows specific types
of computations to be carried out on ciphertexts and generate an encrypted
result which, when decrypted, matches the result of operations performed on
the plaintexts [45].

In mathematical terms, homomorphic encryption can be defined as follows [18]:
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Let M) denote the set of the plaintexts (resp., ciphertexts). An encryption
scheme is said to be homomorphic if for any given encryption key k the en-
cryption function E satisfies.

∀m1,m2 ∈M, E(m1 �M m2)← E(m1)�C E(m2)

for some operators �M in M and �C in C, where ← means “can be directly
computed from”, that is, without any intermediate decryption. If (M,�M)
and (C,�C) are groups, we have a group homomorphism. We say a scheme is
additively homomorphic if we consider addition operators, and multiplicatively
homomorphic if we consider multiplication operators.

The ElGamal cryptosystem was developed by Taher ElGamal in 1985 [14], hence its name.
The original version was only multiplicatively homomorphic. Later, the cryptosystem was
extended to also support addition over encrypted data. Usually, computation is performed
over a finite set of numbers, a cyclic group. Data is therefore first transformed to a member
of such a group, before being encrypted or decrypted. These steps are defined below:

Cyclic Groups A cyclic group G of a particular order q is generated from a single
element: the generator g. In particular, for a multiplicative group of integers modulo
p, i.e. (Zp)

∗, the finite amount of group elements are obtained by applying as
operation the nth-multiplication to g and taking the modulus. However, such a
group is only cyclic whenever q is one of the numbers described in the sequence
A033948 [31] and p = 2q + 1. Consider the following example: Select g = 2 and
q = 5, p = 2q + 1 = 11, then

G = g0, g1, g2, g3, g4

= 20, 21, 22, 23, 24

= 1, 2, 4, 8, 16 //apply modulus p

= 1, 2, 4, 8, 5

Key Generation For key generation, a generator g, a cyclic subgroup G of order q of
(Zp)

∗ must be defined, with q being co-prime to p.

Private Key One chooses a random x from the set
{

1, ..., q − 1
}

and further keeps x
secret.

Public Key To obtain the public key, one generates h = gx and publishes the set of
public parameters

(
G, q, g, h

)
.

Multiplicative Variant

In the multiplicative variant of the ElGamal encryption the basic operations are defined
as follows:



2.3. CRYPTOGRAPHIC FUNDAMENTALS 7

Encryption In order to encrypt a message m ∈ Zq with a given public key, one generates
G = gr with r being selected randomly from the set

{
1, ..., q − 1

}
. Then, one

calculates the shared secret s = hr = (gx)r = gxr. Eventually, the ciphertext is
defined as E(G,H) =

(
gr,m · s

)
.

Decryption To decrypt a ciphertext E(G,H), one calculates the shared secret s =
(gr)x = grx and following m = H · (s−1) = m · hr · (gxr)−1 = m · gxr · g−xr with s−1

being the modular multiplicative inverse of s.

Homomorphic Multiplication The multiplication of the plaintext value over two ci-
phertexts is then performed as follows [33]:

E(m1) · E(m2) = E(G1, H1) · E(G2, H2)

= (gr1 ,m1 · hr1) · (gr2 ,m2 · hr2)

= (gr1+r2 , (m1 ·m2) · hr1+r2)

= E(m1 ·m2)

(2.1)

Additive Variant

The additive alternative of ElGamal takes the message m to the power of the generator
g. Therefore, the basic operations result in the following [11]:

Encryption In order to encrypt a message m ∈ Zq with a given public key, one generates
G = gr with r being selected randomly from the set

{
1, ..., q − 1

}
. Then, one

calculates the shared secret s = hr = (gx)r = gxr. Eventually, the ciphertext is
defined as E(G,H) =

(
gr, gm · s

)
.

Decryption To decrypt a ciphertext E(G,H), one calculates the shared secret s =
(gr)x = grx and following gm = H · (s−1) = gm · hr · (gxr)−1 = gm · gxr · g−xr with
s−1 being the modular multiplicative inverse of s. Then, the discrete logarithm has
to be solved in order to obtain m.

Homomorphic Addition The addition of the plaintext values then follows the proof
below [33]:

E(m1) · E(m2) = E(G1, H1) · E(G2, H2)

= E(gr1 , gm1 · hr1) · E(gr2 , gm2 · hr2)

= E(gr1+r2 , gm1+m2 · hr1+r2)

= E(m1 + m2)

(2.2)

In this work the additive variant is used. The additive variant allows a simple tallying
process in order to obtain the final tally of a voting.
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Prover Verifier
commitment−−−−−−−−−−→
challenge←−−−−−−−−−
response−−−−−−−−→

Figure 2.1: The three steps of a Σ-protocol

2.3.2 Proofs of Knowledge

In an electronic voting scheme, encrypted votes ensure the privacy of a voter’s ballot.
Orthogonally, the system has to ensure that only valid votes are eventually counted to
the end-result of any vote. Proofs of knowledge may ensure such a property in an elegant
way.

In an interactive proof system, two parties are involved: A prover P claiming a particular
statement and a verifier V verifying the validity of this statement. In literature, two main
types of such proofs are distinguished: A proof of knowledge is a proof which guarantees
a particular statement whereas the statement itself may be required to be made public,
whereas a zero-knowledge proof of knowledge (ZKP) allows the verifier to successfully
verify the validity of a particular claim without needing the prover to disclose any of the
private information. [21]

An interactive proof system is called a Σ-protocol if it follows a three-way protocol of
interactions between the prover and the verifier. All required properties are outlined in
the definition from [12]:

A protocol P is said to be a Σ-protocol for relation R if:

• P is of the above 3-move form, and we have completeness: if P, V follow
the protocol on input x and private input w to P where (x,w) ∈ R, the
verifier always accepts.

• From any x and any pair of accepting conversations on input x, (a, e, z), (a, e′, z′)
where e 6= e′, one can efficiently compute w such that (x,w) ∈ R. This
is sometimes called the special soundness property.

• There exists a polynomial-time simulator M , which on input x and a
random e outputs an accepting conversation of the form (a, e, z), with
the same probability distribution as conversations between the honest
P, V on input x. This is sometimes called special honest-verifier zero-
knowledge.

The aforementioned 3-move form is shown in Figure 2.1 and involves a commitment of the
prover to the verifier which the verifier can challenge in turn. Finally, a response is sent
back to the verifier. Based on that response the verifier can decide whether the claimed
statement is correct.
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Since the verifier can challenge the prover multiple times in a sequence, the verifier gains
trust in the prover every time the prover can return a valid response. A cheating prover
has an average probability of 0.5 of answering correctly to an arbitrary challenge. There-
fore, the verifier can repeat the challenge i times in order to obtain any desired target
probability v of having an honest prover: v = Σi

n=1(0.5)i. [25]

However, the interaction between P and V is not always desired: Once having a com-
munication channel established, both, the prover and the verifier need to stay connected
during the entire procedure in order to exchange messages between them. Further, in an
interactive zero-knowledge proof, the transcript of the communication cannot convince
any third party of the correctness of the proof itself, since a malicious verifier could also
have computed the entire communication by itself. Therefore, interactive zero-knowledge
proofs are non-transferable. [25].

This interaction between parties can be avoided by following a procedure outlined in [17]
which was applied to the problem of proving the knowledge about the discrete logarithm
for a particular number. By replacing the challenge chosen by the verifier with a value
computed by a cryptographic hash function, the proof can still be correctly computed and
verified.

Proof of Plaintext Validity

For a particular ElGamal ciphertext, a non-interactive proof allowing a verifier to ensure
that an encrypted ballot actually contains either zero or one is outlined in Algorithm 1.
It is based on the mathematical outline of proofs for ElGamal ciphertexts from [28]. For
each domain variable which is not the plaintext, the algorithm will generate fake com-
mitments (y, z), fake challenges (c) as well as fake responses (s). After having computed
the challenge (the step usually performed by the verifier in an interactive Σ-protocol),
the challenge as well as the response are adjusted to values appropriate to the plaintext
message.

Algorithm 2 shows how a verifier can perform a check for the validity of the proof. First
he reconstructs the commitments (y, z) obtained from the prover. Then, he recalculates
the hash. If the sum of the challenges for each of the domain values is equal to the
reconstructed challenge, then the proof is valid.
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Algorithm 1: Creation of a non-interactive proof for ballot validity

Data: ElGamal public key parameters p, g, h, Plaintext m, Ciphertext E = (G,H),
Domain D of valid messages

{
0, 1
}

begin
sb← ‖g‖h‖G‖H
t ∈random Zq−1
for i ∈ |D| do

if Di = m then
si ← 0
ci ← 0
yi = gt

zi = ht

else
si ∈random Zq−1
ci ∈random Zq−1
yi ← gsi ·G−ci
zi ← hsi ·

(
H
g

)−ci
c← Hash(sb, y1, z1, y2, z2)
c0 ← c− c1 − c2
sDm ← c0 · r + t
cDm ← c0

return s1, s2, c1, c2

Algorithm 2: Validation of a non-interactive ballot validity proof

Data: ElGamal public key parameters p, g, h, Ciphertext E = (G,H), Domain D
of valid messages

{
0, 1
}

, proof parameters s1, s2, c1, c2
Result: True, on a valid proof for the specified ciphertext. False otherwise.
begin

sb← ‖g‖h‖G‖H
for i ∈ |D| do

yi ← gsi ·G−ci
zi ← hsi ·

(
H
g

)−ci
c← Hash(sb, c1, c2, y1, z1, y2, z2)

return c1 + c2 ≡ c



Chapter 3

Architecture

The following sections describe the architecture of the Provotum1 blockchain-enabled elec-
tronic voting system. The backend components provide various core functionalities to two
different browser single page applications (SPA) which were developed using ReactJS 2

and interact with the private Proof-of-Authority Ethereum blockchain. In conclusion,
Provotum provides a verifiable and auditable voting system while retaining privacy.

The main architecture is illustrated in Figure 3.1. At the top, the worker nodes are forming
a private Proof-of-Authority (PoA) Ethereum network (cf. Section 3.2). Each node is
running an instance of the Go Ethereum (geth) client3. These nodes are interconnected
using the Ethereum Wire Protocol4 and publish their Remote Procedure Call (RPC)
interface to clients.

The backend service component manages the interaction with the smart contracts (cf.
Section 3.3). It also provides a websocket and a RESTful interface for the communication
with frontend clients. In order to enable an encrypted communication channel using
Transport Layer Security (TLS) to the voting system, a reverse proxy is integrated on
all nodes. For this task, the Apache HTTP Server5 is used. It terminates all secure
connections on the hosts and forwards packets to the running applications.

A similar setup is also provided on the mock identity provider. Its primary purpose is
determined by serving requesting clients with the private key of a unique pre-allocated
wallet.

Eventually, the two frontend SPA’s are the last two components of Provotum. The admin
frontend6 serves the voting authorities with the possibility to set up a new vote, while the
voter frontend7 is served to the voter and allows him or her to submit his ballot.

1https://provotum.github.io
2https://reactjs.org/
3https://geth.ethereum.org/
4https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
5https://httpd.apache.org/
6https://github.com/provotum/admin
7https://github.com/provotum/frontend

11

https://provotum.github.io
https://reactjs.org/
https://geth.ethereum.org/
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
https://httpd.apache.org/
https://github.com/provotum/admin
https://github.com/provotum/frontend


12 CHAPTER 3. ARCHITECTURE

Figure 3.1: Systems Architecture
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3.1 Stakeholders

In order to execute a successful voting, multiple stakeholders have to interact together.
In the current Provotum system, there are three independent entities. First, the Voting
Authority, which could be a canton or any other legal entity executing a voting. Second,
the Mock Identity Provider, which is a placeholder for a real identity provider that can
be replaced in future versions. The last stakeholder is an eligible voter that is voting on
the subject matter.

3.1.1 Voting Authority

The voting authority (VA) is the main stakeholder of every vote. Before a new vote can be
performed, a new private Proof-of-Authority (PoA) blockchain needs to be initialized and
configured (cf. Section 3.2). The purpose of the VA is to initiate the voting by first setting
up the vote through defining the question to vote on, then opening the ballot to accept
incoming votes and finally closing the ballot. In the end, the VA is also responsible to
initiate the evaluation process after the voting was closed. To finish the voting process, the
VA publishes the results on the Public Bulletin Board (PBB): the private PoA blockchain.

3.1.2 Mock Identity Provider

In practise, an identity provider determines whether a particular person is eligible to vote,
based on various criteria such as nationality or age. However, in this work, the sophisti-
cation of the identity provider is very limited. Thus, instead of effectively verifying that
a voter is eligible to vote, the mock identity provider simply returns a valid authorization
on any request. However, since this component is loosely coupled to all other parts of the
voting system, it could be rather easily replaced by an identity provider verifying voters’
eligibility.

3.1.3 Voter

The voter himself only has to submit his encrypted ballot to the PBB. At the end of the
voting process, he is expected to verify that the voting result is correct.

3.2 Private Proof-of-Authority Blockchain

The main goal of a PBB is to provide a publicly verifiable log of communication [25].
Most voting schemes make use of a PBB to communicate the status of an election, its
progress and the final tally.

Outlined in [26], the main properties of a secure PBB are:
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• information cannot be removed or modified, only added to the board
• anyone may read the board
• the board provides a consistent view to everyone

Blockchains can offer a fully decentralized and tamper-proof infrastructure to execute,
verify and store data [6]. Based on the previously mentioned properties of a secure PBB,
blockchains form a viable foundation for electronic voting systems [35].

Ethereum is a general purpose public blockchain offering Turing-complete scripting lan-
guages [6]. Smart Contracts on Ethereum run in a sandboxed Ethereum Virtual Machine
(EVM) and every operation in the EVM has to be paid for. This principle prohibits
Denial-of-Service attacks on the public blockchain. In this work, the PBB is implemented
as a decentralized private Proof-of-Authority blockchain, based on Ethereum [8]. Each
member of the voting authority is in charge of running one or multiple Ethereum geth

nodes [15]. For each election, a dedicated genesis block is generated, initialized and sub-
sequently forms the starting point for a new private blockchain.

3.2.1 Proof-of-Authority

The Proof-of-Work (PoW) algorithm is the main consensus mechanism in Bitcoin and
Ethereum [6]. A difficult crypto puzzle assures that double spending attacks are infeasible.
The drawback of PoW is the huge amount of energy necessary to solve these crypto puzzles
[6].

A public network without any value running the PoW protocol usually doesn’t offer large
enough computing barriers to fence off malicious attackers [34]. Because of the missing
economic incentives, most miners mine in the live network. Therefore, PoA offers a viable
alternative that doesn’t require huge amounts of computing power.

The PoA protocol Clique is a very simplistic and effective protocol [34] for private blockchains.
In PoW miners race against each other [8]. Contrary, in PoA backed networks authorized
signers can create new blocks whenever it’s their turn. The exact algorithm is outlined in
section 3.2.2.

The main challenge is to set proper parameters to achieve a certain minting frequency,
distribute minting load and how to dynamically adapt the list of the signers [34]. For
our voting system, the clique PoA protocol makes it possible to pre-define all authorized
signers, which in practise could be authorities and infrastructure that are controlled by
government and election officials.

3.2.2 The genesis block

The genesis block is the first block of an Ethereum blockchain [44] and offers a wide array
of configuration possibilities. The following list explains the most important parameters
of the genesis block. Most parameters only apply if the ALGORITHM is set to POA and not
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POW. These values can be adjusted in the setup component of this project. A shortened
example of such a genesis block is outlined in Listing 3.1.

GENESIS_CONFIG_CHAINID defines the chainId field (e.g. the mainnet chainId is 1) and
was introduced in EIP 1558.For a private ethereum network it is suggested to use
a rather unique chainId in order to mitigate networking issues with other chains
and networks. Even if geth is started with the no discover flag which should
prevent random peers from connecting, it is recommended to use something unique
as chainId.

GENESIS_CONFIG_CLIQUE_PERIOD defines the period which is the minimum difference
between two consecutive block’s timestamps. It is suggested to use 15s in order to
remain analogous to the mainnet ethash target [34].

GENESIS_CONFIG_CLIQUE_EPOCH defines epoch, the number of blocks after which to check-
point and reset the pending votes. Please note that votes in this context refer to the
clique algorithm (i.e. to propose new signers) and not the electronic voting system
proposed in this work. It is suggested to use 30000 in order to remain analogous to
the mainnet ethash epoch [34].

GENESIS_NONCE defines the nonce field. In PoW, the nonce is a 64-bit hash proving,
in combination with the mix-hash, that it satisfies the Block Header Validity and
allows to verify that a block has really been mined [44]. However, this field (and
also the miner field) is repurposed in PoA. During regular blocks, both fields are set
to zero. But if a signer wishes to propose a change to all other authorized signers,
it can set the miner field to the signer it likes to vote about and set the nonce to
0x0 or 0xfff...f to vote for adding or removing the proposed signer [34].

GENESIS_TIMESTAMP defines the timestamp field and is a scalar value to the reasonable
output of Unix time() function at the block inception and is used in a mechanism
to achieve homeostasis in terms of time between blocks [44].

GENESIS_EXTRADATA_TWO_SEALERS is written into the extradata field of the genesis block.
The PoA protocol extends this field to on additional 65 bytes with the purpose of
adding secp256k1 miner signatures9. This allows other nodes to verify the list of
authorized signers. Additionally, it makes the miner section in block headers ob-
solete because the address can be derived from the signature [34]. The extradata
used in this work was generated using the puppeth10 helper script and contains the
signatures of the first two nodes, thus authorizing them to sign blocks.

GENESIS_DIFFICULTY defines the initial difficulty. With PoW, difficulty represents
a scalar value corresponding to the difficulty level applied during the nonce discov-
ering of this block. The higher the difficulty, the more calculations have to be
performed to mine a valid block. The value of difficulty is used to adapt the
generation time of a block, thus keeping the frequency within a target range. In

8https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
9https://github.com/ethereum/go-ethereum/blob/master/consensus/clique/clique.go

10https://github.com/ethereum/go-ethereum/tree/master/cmd/puppeth

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/go-ethereum/blob/master/consensus/clique/clique.go
https://github.com/ethereum/go-ethereum/tree/master/cmd/puppeth
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PoA, the difficulty contains one of two constants that signify the quality of a
chain [34].

In PoA difficulty equals either DIFF NOTURN = 1 or DIFF INTURN = 2,
which both are constants. These constants signify whether they contain in-turn or
out-of-turn signatures. For example, if difficulty of a block equals 2, the signer was
in-turn, hence difficulty must equal DIFF_NOTURN if BLOCK NUMBER mod
SIGNER COUNT 6= SIGNER INDEX [34].

GENESIS_GASLIMIT defines the gaslimit which is a scalar value equal to the current
chain-wide limit of Gas expenditure per block [44]. However, the gas limit is dy-
namic and changes per block, the initial value is only the starting point. Using
the targetgaslimit flag, geth can be instructed to diverge towards a constant
gaslimit across all blocks.

GENESIS_MIXHASH is a Keccak 256-bit hash of the entire parent block header and a Pointer
to the parent block, thus effectively building the chain of blocks. Only in the genesis
block, this value is set to 0 [44].

GENESIS_COINBASE is a 160-bit address where the mining rewards are collected. This
field can also be anything for the genesis block [44].

GENESIS_ALLOC_BALANCE defines the amount of ether that is pre-allocated to all the ac-
counts in the alloc tag [44].

{

"alloc": {

"0x0016b3226a4613e547bc958d915684742906b95d": {

"balance": "888888888888888888888888"

}

},

"coinbase": "0x00000000000000000000 [...]",

"config": {

"chainId": 187,

"clique": {

"epoch": 30000,

"period": 15

}

},

"difficulty": "0x1",

"extradata": "0x766972657320696e206 [...]",

"gaslimit": "0x47b760",

"mixhash": "0x000000000000000000000 [...]",

"nonce": "0x0",

"timestamp": "0x5aa98ca1"

}

Listing 3.1: Shortened Example genesis.json
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3.2.3 Remote Deployment

The remote branch11 of the setup repository is dedicated to the deployment on a remote
infrastructure and was tested on five nodes running with 1GB RAM and 1vCPU each.
The nodes were running Ubuntu 16.04.4 x64 and geth 1.7.3-stable-4bb3c89d.

Configuration

The setup consists of a few bash shell scripts and a small Javascript file. In order to config-
ure the deployment, the .env file contains various parameters that will be passed along to
the execution of the JavaScript code in steps/01-deploy-poa-net/src/generateKeys.js.
The parameters in the bash script have to be changed directly at the top of steps/01-

deploy-poa-net/run.sh.

Step 1: Installation

The script installs the npm project and all necessary dependencies. The most important
dependency is keyethereum, which is necessary to easily generate Ethereum account.
After successfully running the install.sh script, setup.sh can be started.

Step 2: Initiate Setup

After starting setup.sh, steps/01-deploy-poa-net/src/generateKeys.js is executed
and generates the amount of NUMBER_OF_KEYS and writes the output into the pri-

vatekeys.json file. This JSON is then sent to the MOCK_IDENTITY_PROVIDER. Next,
the genesis.json file is generated and all public account addresses from the correspond-
ing accounts in privatekeys.json will be pre-allocated in the genesis block which is
written to the disk.

Step 3: Preparation on remote nodes

In order to prepare all nodes for the new election, all running geth processes are killed.
Also, the actual blockchain data (chaindata), old log files and the old genesis block are
wiped from the nodes. Now the nodes are in a clean slate state to start a new election.

Step 4: Distributing data to remote nodes

In this step, multiple files are copied to the nodes via SCP. The files include the new
genesis file, a boot key for the bootnode, a script that will start geth and a javascript file
identities.js holding the public addresses of the accounts that are initialized on the
nodes. Preloading these identities eases testing and assigning wallets.

11https://github.com/provotum/setup/tree/remote

https://github.com/provotum/setup/tree/remote
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Step 5: Initialize genesis block

Before geth can be started, the genesis block needs to be initialized on all nodes. Since
the genesis block is the first block of any Ethereum blockchain, this assures a common
starting point.

Step 6: Start geth

Next, geth is started on all five nodes. Initially, we start the first authorized node with
the mine flag. After that, the script sleeps for a couple of seconds before starting the
second node in order to let the first miner propagate his first mining work. Now the three
other nodes are started exactly the same way, except they are not mining.

Step 7: Attach nodes

Right after step 6 when all geth nodes are running, we don’t rely on the bootnode to
connect all peers. Therefore, the nodes are attached using the attach-nodes.sh script
which collects all admin.nodeInfo from the geth instances and adds them to each other
executing admin.addPeer("enode://1b2dad8...") on every node. After that, the nodes
will start to seal, accept and propagate blocks rather quickly and the private network is
ready for the deployment of smart contracts.

Step 8: Monitoring

Figure 3.2: Tmuxinator tailing geth logs
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Figure 3.3: Tmuxinator displaying geth metrics system/memory/allocs/Overall

Next, we can easily monitor the network using tmuxinator12 and tailing geth logfiles as
displayed in Figure 3.4. Geth also allows to collect and display metrics as displayed in
Figure 3.3.

3.2.4 Local Deployment

Local deployment is rather straightforward, since all geth instances are running on lo-

calhost and can be easily observed with eth-netstats dashboard. The local deployment is
only used for testing purposes and thus not further documented in this work. A detailed
documentation is available on GitHub13. The steps are almost the same as with remote
deployment. First run the install.sh script and start the MOCK-IDENTITY-PROVIDER on
localhost:8090. After sucessfully running the script, you should be able to access the
eth-netstats dashboard as displayed in Figure 3.5.

12https://github.com/provotum/setup/blob/remote/provotum.yml
13https://github.com/provotum/setup/

https://github.com/provotum/setup/blob/remote/provotum.yml
https://github.com/provotum/setup/
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Figure 3.4: Sucessfully finishing setup script
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Figure 3.5: Dashboard eth-netstats

3.3 Smart Contracts

In Ethereum, smart contracts represent a high-level abstraction of code statements which
are compiled to Ethereum Virtual Machine (EVM) bytecode. This bytecode can be saved
and then executed in order to transform the state of information stored on the blockchain.
Most smart contracts are written in Solidity14, which is a contract-oriented programming
language having a syntax similar to JavaScript.

3.3.1 Zero-Knowledge Contract

The initial goal of this work was to execute as many computations as feasible on a decen-
tralized infrastructure, i.e. within smart contracts. The Zero-Knowledge Contract should
verify the encrypted votes. However, after having implemented the encryption with the
corresponding proofs, technical limitations hindered the development of such a verifica-
tion smart contract: On one hand, a library comparable to Java’s BigInteger library
is not available in Solidity. On the other hand, all computation during the encryption
and proving are done within a cyclic field, requiring modular arithmetic for all common
mathematical operations. Unfortunately the design and implementation of such a library
would go beyond the scope of this project.

Therefore, the Zero-Knowledge contract is currently not accomplishing any verifications,
but rather accepts all the votes it receives. Still, the contract is included in the actual
voting process for later implementation. The actual validation of votes is performed in
the Backend component instead (cf. Section 3.5).

14https://github.com/ethereum/solidity

https://github.com/ethereum/solidity
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3.3.2 Ballot Contract

The ballot contract keeps track of all submitted votes by using two structs shown in
Listing 3.2. The Voter struct represents a single voter submitting his choice to the ballot
contract. He is uniquely identified by his wallet address, i.e. the rightmost 20 bytes of
the Keccak-256 hash (big endian) of the ECDSA public key [44]. Along with his address,
the ciphertext encrypting the plaintext vote, the membership proof ensuring that the
ciphertext represents a vote in the domain of the election as well as the encrypted random
number used during encryption are stored.

The information of a running vote itself is represented by a struct called Proposal. It
includes the current amount of voters which already have submitted a choice, a mapping
of the address of a particular voter along whether he has already voted, the list of voters
with their choices and concluding, a string storing the question on which all voters have
to decide on.

Submitting a vote to the contract is as simple as sending a transaction to the method
vote. The arguments are the ciphertext, the proof of the vote and the encrypted random
number of the ciphertext. As shown in Listing 3.3, it is then verified that the submis-
sion of votes has been previously opened by the election authorities. Also, the voter is
required to not have previously submitted a vote. Eventually, the proof is sent to the zero-
knowledge contract where a validation is requested. On success, the voter and his choice
is stored in the proposal. Since return values of methods are not retrievable by current
client implementations, events15 are fired at the same positions as the return statements,
allowing a client to be notified about the state of a processed vote.

struct Voter {

address voter;

string ciphertext;

string proof;

bytes random;

}

struct Proposal {

uint nrVoters;

mapping(address => bool) voted;

Voter[] voters;

string question;

}

Listing 3.2: Structs in the Ballot contract

15http://solidity.readthedocs.io/en/v0.4.21/contracts.html#events

http://solidity.readthedocs.io/en/v0.4.21/contracts.html##events
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contract Ballot {

address private _owner;

bool private _votingIsOpen;

Proposal private _proposal;

ZeroKnowledgeVerificator _zkVerificator;

/**

* @param ciphertext The ciphertext , i.e. a string

* representing (G, H)

* @param proof The corresponding membership proof.

* @param random The random number used in the ciphertext.

* Note , this value is encrypted.

*

* @return bool , string True if vote is accepted , false otherwise ,

* along with the reason why.

*/

function vote(string ciphertext , string proof , bytes random)

external returns (bool , string) {

// check whether voting is still allowed

if (! _votingIsOpen) {

return (false , "Voting is closed");

}

bool hasVoted = _proposal.voted[msg.sender ];

// disallow multiple votes

if (hasVoted) {

return (false , "Voter already voted");

}

bool validZkProof = _zkVerificator.verifyProof(proof);

if (! validZkProof) {

return (false , "Invalid zero knowledge proof");

}

_proposal.voted[msg.sender] = true;

_proposal.voters.push(Voter({

voter : msg.sender ,

ciphertext : ciphertext ,

proof : proof ,

random : random

}));

_proposal.nrVoters += 1;

return (true , "Accepted vote");

}

}

Listing 3.3: Voting in the Ballot contract
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3.4 Security

The security component is a Java Maven artifact, packaging the required cryptographic
methods for encrypting votes and creating corresponding membership proofs. Its imple-
mentation is based on a class providing similar functions as BigInteger but with support
for modular arithmetic. This package provides three main interfaces:

IHomomorphicEncryption This interface specifies the signature for all implementa-
tions of a particular kind of homomorphic encryption. As a generic parameter, it
requires the kind of ciphertext it operates on.

IHomomorphicCipherText Homomorphic cipher texts allow to operate on each other,
abstracting the concrete mathematical details from the caller. It requires a concrete
ciphertext as generic parameter.

IMembershipProof The interface for a membership proof requires a class implementing
IHomomorphicCiphertext as generic parameter, restricting the classes it is able to
generate proofs for.

As concrete implementations, this package bundles the additive variant of the ElGamal
encryption among with the corresponding ciphertext (cf. Chapter 2.3). Additionally,
a non-interactive membership proof following the Chaum-Perdersen protocol and made
non-interactive using the Fiat-Shamir heuristic is implemented. Both implementations are
partially based on the work from [27] and can be found on GitHub16. To avoid replicating
security relevant functions to generate keypairs, this component utilizes BouncyCastle as
security provider17. To ensure a consistent naming for all relevant encryption parameters
in the source code, wrapper objects for a private resp. public key have been implemented.

Further, to allow for serialization resp. deserialization of ciphertexts, appropriate utiliza-
tion classes are implemented. In order to reduce the amount of arguments which have
to be passed to a client as well as to reduce their size, all relevant numeric parameters
are transformed to base 36, the maximum Java supports with its built-in mechanisms18.
Then, their representation are concatenated with uppercase letters as delimiters to form a
string of defined format (Note, that uppercase letters describe their alphabetic counterpart
instead of variables):

Ciphertext is a concatenation of g, the first component of an additive ElGamal cipher-
text; h its second component and m the modulus used during encryption:

Gg‖Mm‖Hh‖Mm

Membership Proof is a concatenation of p, the prime modulus used during the en-
cryption and yi, zi, si, ci the commitments, challenges and responses used in a non-
interactive

∑
-proof, respectively:

Pp‖Y y1, Y y2, ..., Y yn‖Zz1, Zz2, ..., Zzn‖Ss1, Ss2, ..., Ssn‖Cc1, Cc2, ..., Ccn
16https://github.com/FreeAndFair/evoting-systems/tree/master/EVTs/adder
17https://www.bouncycastle.org/java.html
18 java.lang.Character.MAX_RADIX

https://github.com/FreeAndFair/evoting-systems/tree/master/EVTs/adder
https://www.bouncycastle.org/java.html
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Private Key is a concatenation of p, the prime modulus used during encryption; q, the
prime relative to p in the form of p = 2q + 1; g, the base generator of the cyclic
group and x, the private key value:

Pp‖Qq‖Gg‖Xx

Public Key is a concatenation of p, the prime modulus used during encryption; q, the
prime relative to p in the form of p = 2q + 1; g, the base generator of the cyclic
group and h, the public key value h = (gx) mod p:

Pp‖Qq‖Gg‖Hh

In the additive ElGamal variant (cf. Section 2.3.1), the publicly known parameters are
included in the public key serialization specified above. In the presented system, a further
value has to be published to the bulletin board: The random parameter r used during
the encryption of the ciphertext E(m) = (gr, gm · hr). This need initially roots in the
way two ciphertexts are multiplied with each other: Although only the values of G1, H1

resp. G2, H2 are required to perform this calculation, one has to keep track of the sum of
all random values r1 + r2 in order to generate a valid membership proof for the correct
summation of the voting result. An approach not requiring to make the random value
public involves publishing the private key x. However, this would allow all parties with
access to the blockchain to decrypt single votes, removing a layer of privacy for the voter
(Note, the vote is still not assignable to a particular person since the voter’s wallet is
assigned by the identity provider and not linked to a particular identity). Since r is
generated during encryption of a plaintext vote and only reused after the final counting
procedure, it can be encrypted and stored on the public bulletin board. In particular,
these values are encrypted with a dedicated RSA private-public keypair owned by the
voting authorities. Therefore, when trading off publishing the private key for making an
encrypted random value public, the second approach is preferred.

3.5 Backend

The backend application is built on top of the Spring Boot19 Maven artifact, and pro-
vides two main interfaces for interaction: Whereas a RESTful interface allows to initiate
different actions on the Ethereum blockchain, websocket clients are notified about events
published to particular topics20.

The package communication holds all classes related to either the websocket or RESTful
interaction. This includes the plain-old-java-objects (POJOs) which are serialized resp.
deserialized using the Jackson JSON library21. Further, it holds the RESTful controllers
based on a Spring RestController as well as a TopicPublisher service for publishing
events to arbitrary websocket topics.

19https://projects.spring.io/spring-boot/
20For all available endpoints, see Appendix C
21https://github.com/FasterXML/jackson

https://projects.spring.io/spring-boot/
https://github.com/FasterXML/jackson
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For the interaction with the Ethereum blockchain, the backend component uses the
Web3J22 library. Besides of providing abstractions for RPC interfaces offered by an
Ethereum node, Web3J allows to generate Java wrappers based on smart contract defini-
tions written in Solidity. With these definitions, all publicly invocable methods of a smart
contract are reflected by a corresponding method in a Java class, wrapping the smart
contract on Ethereum.

As a last element, the security component is integrated: On application startup, a new
ElGamal and RSA public-private keypair is generated if they do not already exist in
a specified target directory. This assures that the voting authorities are protected from
accidentally overwriting the voting parameters used for encryption, hence hindering them-
selves from ever decrypting the ballot. After defning these parameters, a RESTful inter-
face allows to encrypt plaintext votes and generate corresponding proofs. In addition,
clients to this interface may further request a validation for a ciphertext obtained by
invoking the appropriate endpoint with a corresponding membership proof.

3.6 Frontend

Two distinct browser single page applications allow for managing votes and submitting
votes. Whereas the former is run by the voting authorities, the latter is used by the
voter. Both applications offer a similar graphical user interface (GUI), always displaying
the latest occurred actions in an Event Log.

3.6.1 Administration Frontend

Once the administration frontend is fully retrieved from a web server, it automatically
attempts to establish a websocket connection to the Java backend in order to subscribe
the client application to updates published on particular topics. As illustrated in Figure
3.6, once the VA is connected to the backend, it may insert the voting question in the
corresponding input field. Clicking on Deploy initiates the deployment of a new set of
smart contracts on the private Ethereum blockchain. As soon as the two smart contracts
are deployed, the new state is reflected on GUI. Then, the VA may open the vote for all
participants with a transaction to the ballot contract, proxied by the backend. As soon as
the corresponding event is shown in the Event Log, the VA can communicate the opening
of the vote to all participants.

Once the voting period has been ended, the VA can initiate the formal closing on the
smart contract. Clicking the slider button Close Voting, a transaction is sent to the
ballot contract from the backend. When the transaction was mined, the votes can then
be retrieved and the final result can be computed. Eventually, this is published to the
ballot contract, allowing any outside observer to verify the voting outcome.

22https://github.com/web3j/web3j

https://github.com/web3j/web3j
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Figure 3.6: Administration Frontend Application

3.6.2 Voter Frontend

Right away, the frontend retrieves the ballot contract address from the backend appli-
cation. Further, it obtains a new private key of a pre-allocated wallet from the identity
provider. As shown in Figure 3.7, the voter can request the voting question at hand
directly from the ballot contract, being ensured that he will vote on the appropriate
question. Having decided on the proposed question, he will type 0 for a vote indicating
opposition to the question, 1 for support. By clicking on Encrypt vote, the plaintext
representation is sent to the backend application where it is encrypted and a proof is
generated. Subsequently, both values are then shown in the corresponding input fields.
By clicking on Challenge Vote, each voter can verify that the encrypted vote is within
the accepted boundaries of a valid vote, i.e.

[
0, 1
]
. By manipulating either the cipher-

text or the vote and then re-submitting the verification request, the voter can increase
his trust into the encrypted vote with each validation indicator matching the expected
outcome. Once he is satisfied with the encrypted vote, he will submit the pair containing
the ciphertext and the corresponding proof directly to the blockchain, by sending a raw
transaction to the ballot contract address, initially obtained.

The parameters required by a raw transaction are shown in Listing 3.4. The nonce of a raw
transaction is the amount of transactions which have been sent from the associated wallet
and should not be confused with the nonce during the mining process which represents
the running variable during generation of a valid proof of work. To allow a voter to
send only a single transaction from the obtained wallet even if he would manipulate the
disabled state of the Submit Vote button, the nonce is set to 0x00. Any attempt to send
a transaction again without adjusting the nonce will result in an error.
Whereas the gas price indicates the amount the voter is willing to pay for each operation
caused by his transaction, the gas limit represents the amount the voter is willing to pay
at maximum in order to get his transaction processed. [16]. To obtain a value which gets
the transaction mined, the common approach is to use the amount of the last processed
block.
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Figure 3.7: Voting Frontend Application

The receiver of the transaction is set to the address of the ballot contract initially retrieved
from the backend component. The from address is then recreated based on the buffer
holding the private key obtained from the Identity Provider.
In addition, the transaction data is retrieved from the Application Binary Interface (ABI)
of the ballot contract. The estimated gas required to perform the actions on the ballot
contract is then calculated by a utility function of web3js23. The chain id eventually
specifies the identifier of the blockchain and must match the corresponding field of the
genesis block.

const txParams = {

nonce: "0x00",

gasPrice: this.web3.toHex("22000000000"),

gasLimit: this.web3.eth.getBlock("latest").gasLimit ,

to: contractAddress ,

from: ’0x’ + ethUtil.privateToAddress(privKeyBuffer).toString(’hex’),

value: "0x0",

data: rawTxData ,

gas: this.web3.eth.estimateGas ({to: rawTxTo , data: rawTxData }),

chainId: 187

};

Listing 3.4: Raw Transaction Parameters

After the vote has been closed by the voting authorities, the GUI also provides a mecha-
nism in order to retrieve the final voting result. On the right-hand side in Figure 3.7, the

23https://github.com/ethereum/web3.js/

https://github.com/ethereum/web3.js/
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voter can obtain the sum of all votes. This sum is the plaintext value of the decrypted
result of the homomorphic addition over all cipher texts and does therefore not represent
whether the result is representing support or opposition to the initially asked question.
This information can be recomputed by any party having access to the blockchain: First,
by verifying all proofs of any cipher text, the verifying party will obtain vI votes which
were invalid. Secondly, challenging the proof published by the authorities will allow the
voter to trust the total of yes votes vY . Then, the prover may obtain the vT transactions
to the publicly callable vote method. Eventually, the total number of opposing votes is
then calculated by vT − vY − vI .

3.7 Mock Identity Provider

The final component required by the proposed voting system is represented by an Identity
Provider issuing private keys to voters. Similarly to the Backend application, this provider
is also set up as a Spring Boot application. It provides two RESTful interfaces allowing a
party to store a set of unique private keys of an Ethereum wallet and a second interface,
returning one of these keys to the requester. The exact requests are documented in
Appendix D. Note, that no authentication and authorization whatsoever is required for
invoking these endpoints as this is out of scope for this project.

3.8 Assumptions and Limitations

In the current revision, Provotum only allows simple votes showing support either for
respective against a particular question. However, many votings can not be done with
just a binary answer, requiring a set of possible valid choices. In [28], two further cases
are described:

Multi-Way Elections represent votes where a voter has to select one out of a possible set
of candidates. Since the homomorphic operation of ElGamal is computed over (Zp)

∗, an
appropriate encoding must be found. An approach described by [3] encodes each vote in
a base-representation in the form of B|V | whereas |V | is a number greater or equal to the
amount of voters participating. Then, for C candidates, there are |V |C−1 of different valid
ballots.

Consider the example of four candidates with six voters outlined in Table 3.1. Performing
the addition of all drawn ballots with respect to the base |V | yields:

0001|V | + 1000|V | + 0100|V | + 1000|V | + 0010|V | + 1000|V | = 3111|V |

The result then announces that three voters have voted for candidate C4 and one for
candidates C1, C2, C3.

Limited Votes are elections where the voter can choose K out of L candidates. This
approach was developed in [22] and is outlined in Table 3.2. Instead of summing up a
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Voter Ballot Candidate
V1 0001 C1

V2 1000 C4

V3 0100 C3

V4 1000 C4

V5 0010 C2

V6 1000 C4

Table 3.1: Multi-Way Election

Voter Ballot Candidates
V1

(
1, 0, 1, 0

)
C4, C2

V2

(
0, 1, 1, 0

)
C3, C2

V3

(
0, 0, 1, 1

)
C2, C1

V4

(
1, 1, 1, 0

)
C4, C3, C2

V5

(
0, 0, 1, 0

)
C2

V6

(
0, 0, 1, 0

)
C2

Table 3.2: Limited Vote Election

number to a particular modulus, the ballots are encoded as vectors of size |C|, i.e. having a
coordinate for each candidate. Counting the election result is then performed component
wise:

(
1, 0, 1, 0

)
+
(
0, 1, 1, 0

)
+
(
0, 0, 1, 1

)
+
(
1, 1, 1, 0

)
+
(
0, 0, 1, 0

)
+
(
0, 0, 1, 0

)
=
(
2, 2, 6, 1

)
Candidate C4 and C3 will therefore receive 2 votes, C1 one vote and candidate C2 a total
of six votes, winning the election.



Chapter 4

Voting

In the following chapter, the different voting processes are outlined in detail. Most of the
steps are initiated and executed by the voting authorities (cf. Sections 4.1, 4.2, 4.4, 4.5).
On the voter’s side, only a single procedure must be executed (cf. Section 4.3).

4.1 Initiate a Vote

The first process is described in Figure 4.1: The voting authorities request the adminis-
tration frontend SPA from a webserver. Then, the voting question has to be specified,
which is sent in turn to the backend (cf. step 5). Next, the backend service deploys the
zero-knowledge contract to the private Ethereum blockchain. If this succeeds, the bal-
lot contract deployment is requested on the blockchain as well. Failed deployments are
detected and returned to the frontend in steps 8, resp. 13, allowing the authorities to
request a further deployment.

4.2 Open the Vote

To provide the voting authorities with the possibility to set up the vote prior to the start
date, the ballot contract does not accept incoming votes by default. On the contrary, the
voting authorities have to explicitly open the vote. This procedure is outlined in Figure
4.2a. It requires a single call to the ballot contract by the voting authorities, proxied by
the backend service to the Ethereum blockchain.

4.3 Vote

The voting process itself does not involve any active involvement by the voting authorities
once the voting has been opened. However, it requires that a third party is involved,
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Figure 4.1: Create a Vote

(a) Open the Vote (b) Close the Vote

Figure 4.2: Opening resp. closing a Vote
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authenticating the voters. In this work such an identity provider is stubbed. This means
the mock identity provider is simply returning a unique private key of a pre-allocated
wallet to a voter on each request. Having obtained the private key, the voter may now
specify its choice for the question to vote on. Subsequently, this plaintext vote is sent
to the backend (cf. step 9 in Figure 4.3) and returned in encrypted form, along with a
membership proof for the range

[
0, 1
]
. The voter then has the possibility to manipulate

the ciphertext, as well as the proof. Further, the voter can send these modified values
to the backend again, obtaining information for the following cases depending on his
undertaken manipulations:

Modified ciphertext, unmodified proof The backend will return a negative indica-
tor stating that the modified ciphertext does not hold a vote in the range of

[
0, 1
]

anymore, considering the modified ciphertext is still valid in terms of its deserial-
ization format. Alternatively, the indicator may represent that the ciphertext does
not follow its deserialization format anymore and the proof can not be verified.

Unmodified ciphertext, modified proof In case of an altered proof, the backend will
return a negative indicator in all cases where the ciphertext does not encrypt a valid
value (by means of what the modified proof expects). Alternatively, the indicator
may return unsuccessfully if the proof was altered in a way such that it can not be
deserialized anymore.

Modified ciphertext, modified proof If both values are modified, the backend will
return a negative indicator whenever the ciphertext resp. the proof cannot be de-
serialized or the ciphertext does not match the proofs expected value. Further, the
backend may return a positive indicator, if the proof and the ciphertext were al-
tered in such a way that the expected value is indeed encrypted. Such a vote will
eventually be invalidated during the counting procedure, as the proof must ensure
a vote in the range

[
0, 1
]
.

Once the voter is satisfied with the ciphertext and proof returned by the backend (respec-
tively his own alterations), he may submit his vote, independent of the indicator returned
by the backend. Instead of relying on the backend for the connection to any Ethereum
peer, the voter frontend itself sends a raw transaction to such a node.

4.4 Close the Vote

Similarly as described in Section 4.2, its counterpart process is represented by closing the
vote once the voting period is over. The corresponding procedure is outlined in Figure
4.2b. The voting authority sends a close vote request to the backend which in turns
submits a corresponding transaction to the Ethereum blockchain.
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Figure 4.3: Vote
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Figure 4.4: Count Votes

4.5 Count Votes

Once the voters have submitted their votes and the voting authorities have successfully
closed the ballot contract from accepting any further votes, the counting process can
be initiated. As shown in Figure 4.4, the voting authorities request the counting on
the backend service. Since the ballot contract stores the received votes within a custom
struct data type, the backend first retrieves the total number of votes in step three,
before retrieving each vote (cf. step 6). In order to perform homomorphic addition (by
performing a multiplication over the ciphertext), a zero vote has to be generated to which
the first retrieved vote can be added to (cf. step 5). Before counting a vote to the total
result, it is verified with the corresponding proof. Only on success, the vote is counted to
either the supporting or the opposing vote count. If a vote is invalid, it is still counted
to the total of retrieved votes. Once the sum of supporting votes has been determined,
the sum, its corresponding ciphertext and a newly generated proof are published to the
Ethereum blockchain. Eventually, the voting result is returned to the frontend.
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Chapter 5

Evaluation

In [10], the perfect coexistence of verifiability and privacy is shown to be non-existent.
Nevertheless, the notions of verifiability, auditability and privacy are properties that allow
for a focused evaluation of any electronic voting system. Subsequent sections discuss these
characteristics in more detail and show to what extent they are fulfilled. An overview is
shown in Table 5.1.

5.1 Verifiability

With regards to verifiability, a set of different properties allow for a comprehensive com-
parison of systems:

Individual Verifiability (IV) Once a voter has submitted the encrypted ballot to the
PBB (ref. Section 3.2), the voter will obtain a reference to his transaction, the
transaction hash. As soon as one of the sealer nodes has also broadcasted the block
that incorporates the transaction to all other nodes, the voter could explore the set
of transactions sent to the ballot contract and reveal his particular transaction using
the initially obtained reference. Therefore, this attribute is fulfilled by the proposed
system.

Universal Verifiability (UV) Since all votes are transparently stored on the PBB, they
are available to any third-party having an interest to validate the voting result. In
order to reproduce the final outcome, the third-party would first fetch the sum of
all votes vY along with its proof from the ballot contract. Once the proof is verified,
the third-party would then retrieve all votes vT sent to the ballot contract and their
corresponding proofs. After having validated all ciphertexts, the amount of invalid
votes vI emerges. Finally, the number of votes rejecting the question can then be
obtained by computing vT − vY − vI . Due to the ability of any third-party to verify
these results, UV is also reached.

End-To-End Verifiability (E2E) In order to be classified as a fully E2E verifiable
voting system, three attributes must be achieved:
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fulfilled
Individual Verifiability (IV)
Universal Verifiability (UV)
End-to-End Verifiability (E2E-V)

Cast-as-intended (CAI)
Recorded-as-cast (RAC)
Counted-as-recorded (CAR)

Auditability
Ballot-Privacy (BP)
Receipt-Freeness (RF)
Coercion-Resistance (CR)

= fulfilled = partially fulfilled = not fulfilled

Table 5.1: Overview of evaluation properties and their fulfillment.

cast-as-intended (CAI) Although the voting system allows to encrypt a partic-
ular plaintext vote multiple times, the backend component will always only
return a proof that the ciphertext is within the range of

[
0, 1
]
. Therefore,

a voter cannot be ensured that a malicious backend component implementa-
tion would not just switch his vote to the inverse variant. Due to this, CAI
verifiability is not fulfilled.

recorded-as-cast (RAC) Using the transaction hash (obtained once the vote has
been submitted to the blockchain), the voter can retrieve the sent ciphertext
c′ and the corresponding proof p′ at any given time. By also storing that data

(c, p) before submitting the vote, he then can ensure that c
!

= c′ and p
!

= p′.

counted-as-recorded (CAR) or tallied-as-recorded (TAR) Similar to the au-
diting third-party, the voter can follow the same procedure to obtain the voting
result as published by the voting authorities. In addition, by verifying that the
voting transaction has been received by the ballot contract and the vote was
accepted, the incorporation of his and all other votes is guaranteed.

5.2 Auditability

Proving that a vote is correct may not only be important during the time in which the
voting process is running. Instead, any party should be able to verify that the announced
outcome actually is true, even after the voting has been closed. In the research literature,
no clear distinction between verifiability and auditability is made. However, [5] mentions
Risk Limiting Audits (RLA), which purpose is to maintain a particular risk limit while
not having to perform the same amount of work as posed by recounting the entire set of
votes. Another approach is to examine an audit trail of an append-only datastructure.
Since the outlined system heavily depends on the blockchain as its public bulletin board,
such a data structure is given. Therefore, any third party can audit the voting result as
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long as the voting authorities maintain the set of nodes running the blockchain and access
to them is provided.

5.3 Privacy

The privacy of a voter is an important key feature of any electronic voting system. Three
main attributes can be distinguished according to [25]:

Ballot-Privacy (BP) The proposed system can guarantee BP under the assumption
that the VA will not attempt to identify clients based on their IP address when
connecting to the backend component: Since a voter will only contact this service
to encrypt his vote and challenge the received proof but will not send any further
data related to his identity (e.g. the public key of his wallet), no linkage between
the the voter and the ballot can be made and the voting authorities will not know
for whom a particular voter has voted.
In addition, an observer of the transaction sent from the voter directly to the ballot
contract will not learn anything about his choice either since the vote is already
encrypted with the public key of the voting authorities.
However, a more advanced attacker could also observe the communication between
the voter and the backend component which would allow him to assign the ciphertext
sent to the ballot contract to the plaintext vote. This issue can easily be mitigated
by enforcing a secured connection.

Receipt-Freeness (RF) Once the voter has encrypted his vote, no information on his
choice is available anymore: Only the ciphertext itself along with a corresponding
proof that the vote is valid is available. Since each attempt of encrypting a vote is
further requiring a new instance of a random parameter, a client would not even
be able to prove to any third-party that the ciphertext returned from the backend
component actually was a response to his encryption request, resulting in no receipt
of his choice.

Coercion-Resistance (CR) Although BP and RF are guaranteed to a certain extent,
CR is not achieved: If a coercer is at the same physical location as the voter,
the entire voting process is observable and therefore, the voter can illustrate which
choice he had supported. Since the wallet address of the voter is stored on the ballot
contract to avoid duplicate submissions, he will not be able to submit a new decision
during a later stage in the vote.

Further, the notion of everlasting privacy introduced by [32] requires no assumptions
of cryptographic hardness for achieving privacy. However, the security of the ElGamal
encryption depends on the discrete logarithm problem, i.e. finding x so that h = gx.
As stated in [39], this problem can be solved in polynomial time using Shor’s algorithm
with an appropriate quantum computer. Therefore, the presented system does not fulfill
everlasting privacy.
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Chapter 6

Summary and Conclusion

This work examined the use of distributed ledgers in the field of electronic voting. While
prior research focused on the detailed design of cryptographic schemes and well-defined
properties, this work aimed at a practical implementation of a blockchain-enabled elec-
tronic voting system. We showed that distributed ledgers offer great use for a transparent,
tamper-proof and fully decentralized public bulletin board. However, our evaluation fur-
ther expressed that the usage of blockchains can also introduce new security and privacy
issues, expressing the inherent conflict between privacy and verifiability. More precisely,
technical limitations in the cryptographical capabilities of Solidity have let to unfavourable
architectural decisions. In the current implementation, the properties cast-as-intended and
coercion-resistance could unfortunately not be achieved. With respect to the Swiss reg-
ulatory framework, our system would therefore not be allowed to any nation-wide votes.
With these downsides in mind, the current architecture of the Provotum system still offers
room for improvements.

6.1 Future Work

Although the current Provotum system enables electronic voting with a private blockchain
as public bulletin board, not all initial objectives were achieved. Working towards a
system providing E2E-V, many areas offer room for improvement. This section enumerates
possible focus points for future work on the Provotum system.

Cryptography

Initially, most of the verification process was thought to be executed in a smart contract.
Limitations in the available libraries providing the necessary mathematical operations
were not available: One the one hand a library providing mathematical operations on
numbers greater than 2256, on the other hand an implementation of all common modular
operations on these. Designing such libraries in Solidity is a key feature to bring the
verification process to Ethereum.
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In addition, the current ElGamal implementation could be extended to make use of oper-
ations on elliptic curves instead of a finite cyclic field of integers. Similarly, the encryption
of the random parameter of each ciphertext could be implemented with ECDSA instead
of RSA. This would also require research for appropriate libraries in Solidity.

Cast-as-intended Verifiability

To allow the Provotum system to be considered for Swiss electoral processes, cast-as-
intended verifiability must be provided. Instead of only generating a range proof for a
particular vote, the Backend component could also provide the voter with two dedicated
proofs ensuring a supporting or opposing vote. These proofs may however not be stored
on the blockchain, as they would allow any party to verify which sender has voted for
which option. Therefore, a solution ensuring the current privacy level while maintaining
cast-as-intended verifiability could be designed and integrated.

Identity Provider

Thirdly, the current implementation only uses a mock identity provider to assign wallets
to arbitrary voters. In a real-world electronic voting system, only eligible voters should
be able to submit votes. With the latest discussions on ERC 2751, it may be feasible to
implement this functionality on Ethereum and integrate it to the Provotum system.

Elections instead of Votes

The current implementation also only supports for simple yes/no questions. As outlined in
Section 3.8, further work could focus on implementing Multi-Way Elections and Limited
Votes. Having elections already in mind, strategies for majority and proportional elections
could be developed.

User-Interface and User-Experience

Eventually, the end-user should not be left out of the equation. A good user experience
and a well-designed user interface are important factors for adaption and acceptance of the
electronic voting channel in society. The current implementation of the Provotum system
offers room for improvement: To make testing easier, simply reloading the browser clears
any state information in all the frontend SPAs. Persisting state information could be a
starting point for improvements. Additionally, a voter must be instructed on how he can
verify and challenge proofs sent by the voting authority for his encrypted vote. A refined
guidance of the voter through all these steps may be a further key point.

1https://github.com/ethereum/EIPs/issues/725

https://github.com/ethereum/EIPs/issues/725
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Appendix A

Installation Guidelines

In order to run the Provotum voting system, the following requirements must be met:

Frontend Applications require

• Node.js 9.4.0 or newer

• Node Package Manager (NPM) 5.6.0 or newer

Backend, Security and Mock Identity Provider require

• Java 8 or newer

• Apache Maven 3.5.0 or newer

Ethereum requires

• Go Ethereum Client (geth) in version 1.7.3

• Solidity Compiler (solc) in version 0.4.19

• Web3js in version 0.20.5

• Web3j in version 3.2.0

Then, you may use the contents of the attached CD to setup a local instance of the voting
application. Note, that the steps below will only refer to the order on how you should set
up all components. For detailed installation instructions, refer to the README in each of
the projects.

• Install the Maven artifact of the Mock Identity provider on your system. Then run
mvn:spring-boot run to start.

• Install the Maven artifact of the Security component on your local system using mvn

clean install.

• Install the Maven artifact of the Backend component on your local system using mvn

clean install.
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• Run the local variant of the Setup script to start a set of sealer nodes with a
predefined Genesis block. This will also send pre-allocated wallets to the Mock
Identity Provider.

• Run the Backend component by executing mvn:spring-boot run.

• Start the voting authority frontend by invoking npm start -s from its root direc-
tory.

• Start the voter frontend by invoking npm start -s from its root directory.



Appendix B

Contents of the CD

The attached CD contains the following:

• A description of the CD contents

• All the source code for Provotum

• All Related Work papers as either PDF or HTML

• This report in source files, PDF and PS as well as all the contained figures in JPG,
PNG and/or their sources files.
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Appendix C

Backend Interface Specifications

C.1 RESTful interface specification

For requesting operations on the Blockchain, a RESTful interface is provided. The fol-
lowing subsections describe the available endpoints.

Note: Generally, there is no direct response to any request one makes to the RESTful
API since operations on a blockchain may take an undefined amount of time. Therefore,
the backend will process the incoming requests asynchronously and notify about results
on a corresponding websocket topic.

On a successful request, all endpoints will return a HTTP status code of 202 Accepted

and an empty body, if not stated differently. The endpoints may return a HTTP status
of 400 Bad Request and an empty body if fields are missing or the request is malformed.

C.1.1 Zero-Knowledge Contract

Deploy Deploy a new zero-knowledge contract. The request should follow the form
below with the appropriate host not set. The corresponding response will then be
published to the Deployment Topic.

Request

POST /zero -knowledge/deploy HTTP /1.1

Content -Type: application/json; charset=utf -8

Remove Remove a zero-knowledge contract at a specific address. The corresponding
response will be published to the Removal Topic.

Request

DELETE: /zero -knowledge /{ contractAddress }/ remove HTTP /1.1

Content -Type: application/json; charset=utf -8
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C.1.2 Ballot Contract

Deploy Deploy a ballot contract. The zero-knowledge contract must be deployed previ-
ously as its address is required in the request shown below. Voters are not allowed
to vote yet. The corresponding response will be published to the Deployment Topic.

Request

POST /ballot/deploy HTTP /1.1

Content -Type: application/json; charset=utf -8

{

"election": {

"question": "The question to vote on"

},

"addresses": {

"zero -knowledge": "<zero -knowledge contract address >"

}

}

Retrieve Ballot Contract Address Once deployed, third parties can fetch the latest
contract address from this endpoint. Note, that each time a new ballot is deployed,
the returned address is different and no history is provided. Note further, that the
returned address may be null and a status code of 412 Precondition Failed, is
returned if the contract has not yet been deployed.

Request

GET /ballot/address HTTP /1.1

Content -Type: application/json; charset=utf -8

Response

HTTP /1.1 200

Content -Type: application/json;charset=UTF -8

Transfer -Encoding: chunked

Connection: close

{

"address":"a contract address"

}

Open Vote Allow voters to vote on a specific contract specified in the URL. The corre-
sponding response will be published to the State Topic.

Request

POST /ballot /{ contractAddress }/open -vote HTTP /1.1

Content -Type: application/json; charset=utf -8

Close Vote Close the ability of voters to vote on a specific ballot contract. The corre-
sponding response will be published to the State Topic.

Request

POST /ballot /{ contractAddress }/close -vote HTTP /1.1

Content -Type: application/json; charset=utf -8
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Get Question Request the question from the specified ballot contract. The correspond-
ing response will be published to the Meta Topic.

Request

POST /ballot /{ contractAddress }/ question HTTP /1.1

Content -Type: application/json; charset=utf -8

Get Results Request the results of the vote from the ballot contract specified. Note, that
this will also publish the resulting sum to the ballot contract. The corresponding
response will be published to the Meta Topic.

Request

POST /ballot /{ contractAddress }/ results HTTP /1.1

Content -Type: application/json; charset=utf -8

Remove Remove the contract at the given address. The corresponding response will be
published to the Removal Topic.

Request

DELETE /ballot /{ contractAddress }/ remove HTTP /1.1

Content -Type: application/json; charset=utf -8

Encryption Encrypt the given vote and generate a corresponding proof, that the vote
is within the boundary of a valid vote, i.e.

[
0, 1
]
.

Request

POST /encryption/generate HTTP /1.1

Content -Type: application/json; charset=utf -8

{

"vote": 1

}

The response will have a status code of 201 and contain the ciphertext as well as
the corresponding proof in the body:

Response

HTTP /1.1 201

Content -Type: application/json;charset=UTF -8

Transfer -Encoding: chunked

Connection: close

{

"ciphertext":"ciphertext",

"proof":"proof",

"random":"encrypted random value"

}

Verify a ciphertext The backend allows to verify a proof of a particular encryption,
i.e. that the vote is within the boundary of a valid vote, i.e.

[
0, 1
]
. Note, that

this endpoint will only return valid responses for cipher texts and proofs which were
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generated with the same ElGamal public-private keypair as the backend is using at
the time of the received request.

Request

POST /encryption/verify HTTP /1.1

Content -Type: application/json; charset=utf -8

{

"ciphertext": "ciphertext",

"proof": "proof"

}

If the proof is valid for the given ciphertext, then a status code of 200 is returned,
409 otherwise. The response body will be empty in all cases.

Response

HTTP /1.1 200

Content -Length: 0

Connection: close

C.2 Websocket interface specification

For listening for actions performed on the blockchain, the backend provides a websocket
interface allowing clients to subscribe to different topics. The base path for all websocket
connections is websocket. The topics described in the following are all assumed to be
relative to this base path.

C.2.1 Topic Endpoints for RESTful intialized requests

The following subsections list events which are published as a response to a RESTful
request.

Deployments The path for receving notifications about a successful resp. erroneous
deployment is /topic/deployments. A message published on this topic follows the
structure below:

{

"id": "<UUID >",

"responseType": "<ballot -deployed|zero -knowledge -deployed >",

"status": "<success|error >",

"contract": {

"type": "<ballot|zero -knowledge >",

"address": "<contract address >"

},

"message": "optional message , may be an empty string"

}

Note that the element address may be null, if the status equals to error.



C.2. WEBSOCKET INTERFACE SPECIFICATION 61

Removals The path for receiving notifications about a removal of a contract is /topic/re-
movals. A message published on this topic follows the structure:

{

"id": "<UUID >",

"responseType": "<ballot -removed|zero -knowledge -removed >",

"status": "<success|error >",

"transaction": "0x1234567890",

"message": "optional message , may be an empty string"

}

Votes The topic to listen for events corresponding to votes is /topic/votes

{

"id": "<UUID >",

"responseType": "<vote",

"status": "<success|error >",

"transaction": "<sender addresss >",

"message": "optional message , may be an empty string",

}

Opening resp. Closing Voting The topic to listen for events opening resp. closing the
vote: /topic/state. A message will follow the format below:

{

"id": "<UUID >",

"responseType": "<open -vote|close -vote >",

"status": "<success|error >",

"transaction": "<sender addresss >",

"message": "optional message , may be an empty string",

}

Meta A meta message usually includes information about the current state of a contract.
Currently, the following events are emitted:

GetQuestionEvent: Contains the question of a ballot.

{

"id": "<UUID >",

"responseType": "get -question -event",

"status": "<success|error >",

"message": "optional message , may be an empty string",

"question": "<question >"

}

GetResultsEvent: Contains the current votes of a ballot.

{

"id": "<UUID >",

"responseType": "get -results -event",

"status": "<success|error >",

"message": "optional message , may be an empty string",

"votes": {

"yes": 0,

"no": 1,

"total": 1,

"invalid": 0

}

}
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C.2.2 Topic Endpoints for Blockchain Events

The following section describes events which happened on the blockchain and are for-
warded to a topic.

Events The path for receving notifications about events is /topic/events. The following
events may occur:

ChangeEvent: A event changing the current status of the Ballot contract. This
event is usually emitted when the voting has been opened resp. closed on the
contract or one of the contracts has been removed.

ProofEvent: An event indicating that a proof validation has taken place on the
Zero-Knowledge Contract.

VoteEvent: The event on the blockchain, indicating that a vote has been processed.

In all cases, the event has the form:

{

"id": "<UUID >",

"responseType": "<vote -event|change -event|proof -event >",

"status": "<success|error >",

"senderAddress": "0x1234567890",

"message": "optional message , may be an empty string"

}
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Identity Provider Interface
Specification

The Identity Provider provides a RESTful interface for interacting. Its specification is
outlined in the following section.

D.1 RESTful interface specification

Add Wallets In order to add new wallets (and remove the old ones), submit their private
keys as shown in the request below.

Request

POST /wallets HTTP /1.1

Content -Type: application/json

{

"wallets": [

{

"private -key": "<string >"

},

{

"private -key": "<string >"

},

...

]

}

Retrieve a Wallet In order to get a non-assigned wallet’s private-key, use the following
request:

Request

GET /wallets/next HTTP /1.1

Content -Type: application/json

Successful Response
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{

"private -key": "<string >"

}

Erroneous Response

{

"timestamp": 1519138261748 ,

"status": 404,

"error": "Not Found",

"exception": "org.provotum.mockidentityprovider.exception.

NoWalletLeftException",

"message": "No wallet left",

"path": "/wallets/next"

}
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