
Design and Implementation of Cast-as-Intended Verifiability
for a Blockchain-based Voting System

Christian Killer, Bruno Rodrigues, Raphael Matile, Eder Scheid, Burkhard Stiller
Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH

Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
[killer,rodrigues,scheid,stiller]@ifi.uzh.ch,raphael.matile@bluewin.ch

ABSTRACT
Digitization of electoral processes depends on confident systems
that produce verifiable evidence. The design and implementation of
voting systems has been widely studied in prior research, bringing
together expertise in many fields. Switzerland is organized in a fed-
eral, decentralized structure of independent governmental entities.
Thus, its decentralized structure is a real-world example for im-
plementing an electronic voting system, where trust is distributed
among multiple authorities.

Thiswork outlines the design and implementation of a blockchain-
based electronic voting system providing cast-as-intended verifia-
bility. The generation of non-interactive zero-knowledge proofs of
knowledge enables every voter to verify the encrypted vote, while
maintaining the secrecy of the ballot. The Public Bulletin Board
(PBB) is a crucial component of every electronic voting system,
serving as a publicly verifiable log of communication and ballots
- here a blockchain is used as the PBB. Also, the required crypto-
graphic operations are in linear relation to the number of voters,
making the outlined system fit for large-scale elections.

CCS CONCEPTS
•Applied computing→Voting / election technologies; •Com-
puter systems organization → Peer-to-peer architectures; •
Security and privacy → Public key encryption;

KEYWORDS
Cast-as-Intended Verifiability, Blockchain-based electronic voting

1 INTRODUCTION
The electronic transformation of political systems has proven to
be a challenging task in recent years [23]. The notion of secure,
verifiable, and auditable Remote Electronic Voting (REV) systems
has attracted a lot of attention in both research and industry [3].
Retaining privacy whilst achieving verifiability has become a key
challenge towards the design and implementation of secure REV
systems [19]. Serving as a transparent, immutable, and distributed
ledger, Blockchains (BC) offer new benefits for REV [11]. Instead of
relying on a single, centralized authority, a system of distributed,
equivalent authorities is proposed. Further, BCs serve as a highly
replicated, tamper-proof audit trail, which enables the verification
of cryptographic proofs, crucial for REV.

Switzerland is formed by a collection of decentralized, indepen-
dent legal entities (cantons), coordinated under the Swiss Federal
Government. Each canton contains multiple municipalities and de-
fines its own constitution and laws. The political system is under

the authority of the cantons, i.e., cantonal laws and ordinances
regarding political rights are defining elements these processes.

Instead of relying on existing public permissionless BCs, the
deployment of a public permissioned BC is more suitable, since
only authorized entities (e.g., Election Authorities (EA)) should be
authorized to sign blocks, whilst the general public can verify the
BCs data. Also, democratic voting requires central coordination,
at least up to the extent of agreeing on the voting question, the
voting period, and the decision regarding a voter’s eligibility. Thus,
permissionless consensus does not provide any desirable properties.
Permissioned consensus, on the other hand, enables such things on
the protocol layer. Often, the role of a EA can be split up among
a set of different electoral parties, such as counties, cantons, or
even municipalities. Similarly, a scenario where representatives of
political parties cooperate to administer voting is possible. Thus,
mirroring the federalistic structure of government entities in a
decentralized architecture is a valid approach, which also enables
opportunities beyond REV.

A crucial component in a REV system is a secure Public Bulletin
Board (PBB). Normally, a PBB serves as a consistent, append-only,
publicly available and verifiable log of communications [20]. Thus,
a blockchain is perfectly suitable as a PBB. A verifiable system has
to be auditable in order to offer verifiability of correct functionality.
With a BC-based solution, voters are able to rely on a transparent,
immutable, and decentralized ballot box.

While prior work summarized the design, this paper presents the
design, implementation and evaluation of a BC-based REV system
providing Cast-as-Intended Verifiability [24].

This paper is structured as follows. Section 2 discusses the back-
ground and related work. Section 3 details the key assumptions,
design, protocol, and implementation. Section 4 includes evalua-
tions, and Section 5 draws conclusions and outlines future work.

2 ENVIRONMENT
This work implements REV in an uncontrolled environment, i.e.
over the internet. The REV system requires at least two interacting
stakeholders in any vote or election: Election Authorities (EA) which
operate a component to manage, store, and tally votes and Voting
Software Client (VSC) executed on the Voters’ end-clients, such as
a computer or mobile device. The following background focuses on
the practical security aspects, thus leading towards related work
and the actual design.

2.1 Background
In Switzerland, cantons and municipalities are independent bod-
ies [13]. Hence, they can define details of voting methods inde-
pendently and according to their cantonal constitution [15]. The



proposed REV system leverages this federalistic structure and dis-
tributing trust among EAs. In order to guarantee a secure voting
process, Sender-anonymous channels and untappable communica-
tion channels are required [19]. Sender-anonymous channels assure
that a sender cannot be identified by the receiver of a message,
whereas untappable communication channels ensure that neither
the sender nor the receiver “can learn anything about the commu-
nication, including whether communication occurred or not” [19].
Further, the security of the Voting Software Client (VSC) is crucial
for the integrity of the REV system. Two modes of deployment are
possible for REV over the internet.

(1) The VSC is executed on secured infrastructure, controlled
by the EA.

(2) The VSC is distributed to the Voters, executing it on their
devices.

Considering deployment method (2), where the EA provides the
VSC binary to the Voter, not only the integrity of the VSC binary
needs to be verified, but also the communication channels also need
to be secured. Serving the VSC via the internet allows for multiple
threat events, such as malicious browser extensions [10]. Possible
countermeasures include integrity verification by either signing
the code using public key cryptography (which is impractical due
to missing standards) or by utilising the W3C Subresource Integrity
(SRI)[30] recommendation to verify the integrity of JavaScript code
rendered by the browser. Current REV systems use these approaches
[10]: First, secure connections to the browser are enforced when
loading the VSC code. Second, integrity checks on the server-side
are executed. In addition, a dedicated JavaScript application down-
loads the source code and verifies the code with respect to a previ-
ously generated baseline [10].

Further, transaction censorship by malicious nodes should be
considered. A malicious node could simply destroy and not forward
the vote at all. However, the incentive for such behaviour is low:
If the vote is encrypted and the voter’s identity is not disclosed to
the node receiving the vote (e.g. by using masked identifications).
Additionally, broadcasting to multiple nodes mitigates this risk
successfully.

2.2 Related Work
Research on secret ballot voting schemes span nearly four decades,
continuously refining theoretical properties to evaluate systems
and protocols. The notions of privacy evolved from ballot-privacy
[8] and receipt-freeness [5] toward coercion-resistance [21] and ev-
erlasting privacy [22]. As key building blocks of many REV systems,
homomorphic encryption schemes have to be considered, which
enable the voter to encrypt votes, while allowing for the tallying of
encrypted votes by the authorities, decrypting only the final tally
[1]. Additional methods include re-encryption, blind signatures [9],
zero-knowledge proof systems, and designated verifier proofs or
mixnets [19].

In the context of REV, verifiability states that a voter can trace
the effect of his or her vote on the final tally [19]. Ensuring receipt-
freeness and coercion-resistance, cryptographic protocol systems
are also able to satisfy individual (IV) and Universal Verifiability
(UV) [19].

While IV guarantees that a voter can verify that her vote counts
correctly [27], UV ensures that anyone can verify that the result
is a correct set of votes cast [19]. Additionally, UV guarantees
that it is possible to publicly verify that the tally of the ballots is
correct. A crucial collection of security properties in REV is End-
to-End Verifiability (E2E-V) [4]. E2E-V consists of three core steps
[2]: Cast-as-Intended, Recorded-as-Cast and Counted-as-Recorded
verifiability.

Thus, achieving CaIV is a first step towards E2E-V in blockchain-
based REV. These concepts of privacy and verifiability are continu-
ously challenged and applied to assess electronic voting systems
and protocols alike. Prior work focused on designing systems on
top of existing permissionless BCs. [26] presents a boardroom vot-
ing solution based on an Ethereum Smart Contract as a PBB in
which all encrypted votes are stored. [31] applies a ring-signature
based approach, using the limited OP-CODE execution environ-
ment of the Bitcoin BC. However, the limitations of the execution
environments provided by public permissionless BC make it hard
to implement and deploy complex cryptographic operations and
led to the design and implementation of this work.

3 DESIGN AND IMPLEMENTATION
The following sections describe the relevant assumptions for the
proposed REV system. Since this work uses a BC as PBB, the rele-
vant consensus mechanism is detailed as well. Further, the details
of the voting protocol enabling Cast-as-Intended Verifiability is
outlined, combined with the implementation details.

3.1 Assumptions
Assumptions directly impact any systems architecture, since design
decisions must be compliant [7]. Explicitly documenting assump-
tions prior to the system implementation is key. Thus, the central
assumptions are collected in Table 1, taking into account some of
the legal requirements of Switzerland.

Table 1: Assumptions

ID Description
𝐴1 Every voter is only allowed to cast a single vote, once.
𝐴2 Every eligible voter is uniquely identifiable.
𝐴3 The voting authority nodes are fixed and known a priori.
𝐴4 The connection between the voter’s voting device and the

voting network is confidential.
𝐴5 The submitted votes contain either 1 or 0, thus the votes

are binary.

Considering 𝐴1, in any election performed in Switzerland, every
eligible voter is restricted to cast only a single vote [14]. This con-
trasts with some theoretical protocols and approaches to coercion-
resistant systems, which allow people to cast multiple votes but
only count the last submission [3]. To enable 𝐴1, 𝐴2 requires every
voter to be uniquely identifiable. This does not necessarily imply
publicly verifiable links between voters and their votes. Since the
number of Swiss cantons and municipalities seldomly change, the

2



EAs are known in advance (𝐴3). Further,𝐴4 states that communica-
tion channels to the REV system must be confidential. And finally,
𝐴5 declares the scope of this work, focusing on binary votes.

3.2 Public Bulletin Board (PBB)
A Public Bulletin Board (PBB) is a crucial part of any REV system,
because auditable information is published during the execution
of the voting protocol. Such a PBB shall provide the following
properties[19, 20]:

(1) It is an append-only data structure, i.e. information cannot
be modified or altered.

(2) It is public in the sense of being searchable by anyone.
(3) It is consistent in its view for anyone accessing its informa-

tion.
Thus, in the case of Switzerland, mirroring the federalistic gover-
nance, a publicly verifiable BC, without one single leader can serve
as an appropriate PBB.

3.3 Consensus Algorithm
Selecting an appropriate byzantine fault-tolerant (BFT) consen-
sus algorithm in a permissioned BC is crucial for the security and
performance properties of the proposed REV system. Ethereum’s
Proof-of-Authority (PoA) consensus algorithm Clique [29] provides
a suitable and efficient approach for a public permissioned BC. This
work applies a simplified version of the original Clique [29] al-
gorithm, since it does not include mechanisms to add or remove
authorized signer nodes, as according to Assumption 3, this func-
tionality is not desirable for a REV system where all EAs are known
beforehand.

3.3.1 Leader and Co-Leader. In the Clique consensus algorithm,
epochs are fixed time periods. During epochs, a set of nodes is
authorised to sign and broadcast blocks: One leader and a number
of co-leaders. Nodes recognize their role by calculating whether
their respective index in the list of authorities is considered a leader
or co-leader for the current epoch. Figure 1 shows an example where
the block period is set to two, so in that instance, two co-leaders
are always defined during each epoch.

Upon receiving a new transaction, 𝑡𝑛 , nodes validate parameters
of 𝑡𝑛 for correctness, while also verifying that 𝑡𝑛 is not yet persisted
in the local storage to avoid processing duplicate transactions. If
the node is leader or co-leader for the current epoch, the node
appends 𝑡𝑛 to the local storage T , which contains a pool of all
transactions waiting to be summarized to a block. Further, the
received transaction is broadcast to all to propagate the transaction
to other peers and EAs, which also assures that race conditions
between diverging transaction pool states among leaders and co-
leaders are avoided. Similarly, upon receiving a new block, the
block is verified for its validity, i.e. whether the block is correctly
signed and whether the references to the transactions are correct.
Eventually, the new block is appended to the canonical chain.

Blocks are only signed if the node is currently a leader or co-
leader. Then, the nodewaits until the period of the current epoch has
ended and immediately builds the blockwith all known transactions.
To reduce the number of forks occurring when both the leader and
its co-leaders announce a block at the same time, co-leaders are

𝑎1

𝑎2 𝑎3

𝑎4

𝑎5𝑎6

(a) Epoch 1: 𝑎1 is leader, 𝑎2, 𝑎3
are co-leaders

𝑎1

𝑎2 𝑎3

𝑎4

𝑎5𝑎6

(b) Epoch 2: 𝑎2 is leader, 𝑎3, 𝑎4
are co-leaders

Figure 1: Clique’s leader election with signer limit set to two

genesis

𝑎1

𝑒1

𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑒2 𝑒3

𝑐3 𝑐4 𝑐5

𝑏4

𝑑4

Figure 2: A chain of blocks with its heaviest chain marked in red

urged to delay their broadcast by a small amount of time, allowing
the other nodes to receive the block from the leader first.

As multiple nodes are allowed to propose blocks per epoch, BC
forks can occur [12]. In Ethereum, the Greedy Heaviest-Observed
Sub-Tree (GHOST) protocol [28] is used to resolve such conflicts. In
short, it chooses the heaviest subtree of each block for building the
main chain for a specific notion of weight. By assigning weights
to each block, such that the block of the leader weighs more than
the ones of its co-leaders, the main chain can be constructed. Fur-
ther, so-called uncle blocks (all other children of the grandparent
of the block in consideration), and blocks which were already refer-
enced as parents multiple times, will also be preferred. For instance,
considering the BC depicted in Figure 2 and suppose the GHOST
protocol considers the number of direct uncles and children for the
weight assignment. Starting from the blocks with the lowest height,
node 𝑐4 has a weight of 2, as it has one child and one uncle (𝑎3).
Node 𝑐3 has a weight of 3, as it has three children but no uncle.
The weight for node 𝑎3 equals the amount of its children, i.e. 1.
Hence, the decision on the branch at 𝑎2 is made in favour for 𝑐3 as
its weight, 3, is heavier than the one from 𝑎3, which is 1.

To further give preference to blocks which have been signed by
a leader, Clique specifies a doubled weight for blocks being signed
by a leader. In particular, Ethereum’s Clique implementation is
calculating up to seven levels1 ahead for computing the number of
uncles of a block.

3.3.2 Data Model. A transaction contains the actual payload of
the BC. Besides containing a hash digest of the content, serving as
identifier for the transaction, information on the type of payload
is accompanied by the payload itself. Thus, the set (𝑇𝑉𝑜 ,𝑇𝑉 ,𝑇𝑉𝑐 )
of transaction types defines what is intended by the payload it
contains. The transaction specifying 𝑇𝑉𝑜 indicates that all further
received transactions should be considered as votes submitted after
1https://github.com/ethereum/wiki/wiki/Design-Rationale#uncle-incentivization

3

https://github.com/ethereum/wiki/wiki/Design-Rationale#uncle-incentivization


the election period has started. 𝑇𝑉𝑐 defines a transaction which
indicates that the voting period has ended and the election has been
closed from accepting any further transactions. 𝑇𝑉 is the actual
voting transaction containing an actual vote from an end-user.

A block represents the body in which a set of transactions are
contained. A block contains a timestamp, showing when it was
created, the transactions as payload, and the parent hash, iden-
tifying a block as its parent. Based on that, the BC can be built.
The genesis block is a special block instantiation and specifies all
system-relevant parameters for the BC. As such, it is used as the
root of the BC and the hash of its contents forms the first reference
to which all direct child-blocks refer. Any change applied to the
configuration of the genesis block or to the content of all other
blocks will lead to a different hash and, therefore, a different chain
of blocks.

3.4 Voting Protocol Design
An overview of the four-step protocol [17] is provided in Figure 3.

Figure 3: System overview

Step 1 - Setup:
{}

→
{
𝑆𝑉 𝐼, 𝑆𝑉 𝐼, 𝑃𝑉 𝐼, 𝜎,

(
𝑠𝑘𝑒 , 𝑝𝑘𝑒

)}
.

The Setup protocol [17] generates a public-private key-pair (𝑝𝑘𝑒 , 𝑠𝑘𝑒 )
for the additive ElGamal cryptosystem [16]. (𝑎) The space of the
secret Universal Cast-as-Intended Verification (UCIV) information
(𝑆𝑉 𝐼 ), (𝑏) the corresponding space of voting-option dependent
secret UCIV information 𝑆𝑉 𝐼 , and (𝑐) the space of public UCIV
information 𝑃𝑉 𝐼 are generated. The function 𝜎𝑣 : 𝑆𝑉 𝐼 → 𝑆𝑉 𝐼 map-
ping the secret UCIV information to a voting option-dependent
secret UCIV information is specified as well.

Step 2 - Register:
{
𝑣𝑖𝑑,𝑉 , 𝑝𝑘𝑒

}
→

{
(𝑢𝑐𝑖𝑣𝑠 ,𝑢𝑐𝑖𝑣𝑝 )𝑣𝑖𝑑

}
.

The Register protocol [17] generates the private and public UCIV
information for a particular voter, based on the voter id 𝑣𝑖𝑑 , the set
of voting options 𝑉 , and the public election key 𝑝𝑘𝑒 . The Register
protocol is executed by a registrar independent of the voting au-
thorities, assigning the voter id 𝑣𝑖𝑑 to all voters. In a scenario where
election authorities could link from the 𝑣𝑖𝑑 to a voter’s real-world
identity, authorities could decrypt votes and break ballot secrecy

since the authorities possess the election private key 𝑠𝑘𝑒 . Depend-
ing on the trust assumptions and requirements, the registrar can
be a state-owned entity, but should be separated from the election
authorities to minimize the risk of collusion.

Step 3 - Cast Vote:
{
𝑣𝑖𝑑, 𝑣,

(
𝜎𝑣 (𝑢𝑐𝑖𝑣𝑠 ),𝑢𝑐𝑖𝑣𝑝

)𝑣𝑖𝑑
, 𝑝𝑘𝑒

}
→{

𝐶𝑣𝑖𝑑 , 𝑀𝑣𝑖𝑑 ,𝑉 𝑣𝑖𝑑
}
.

Step 3 starts as soon as the election is opened (cf. Figure 4, third
vertical dashed line). An indicator is published on the PBB, spec-
ifying that ballots are accepted now. To generate a valid ballot,
(𝑎) the voter id 𝑣𝑖𝑑 , (𝑏) the selected voting option 𝑣 , and (𝑐) the
election public key 𝑝𝑘𝑒 are required. In addition, (𝑑) the output
of the evaluation of the voting option-dependent function on the
secret UCIV information 𝜎𝑣 (𝑢𝑐𝑖𝑣𝑠 ), and (𝑒) the corresponding pub-
lic UCIV information 𝑢𝑐𝑖𝑣𝑝 is provided as protocol input. With
the help of these arguments, the homomorphic additive ElGamal
ciphertext 𝐶𝑣𝑖𝑑 is generated. Correspondingly, a universal Cast-as-
Intended verification proof 𝑉 𝑣𝑖𝑑 is generated [17]. A membership
proof guarantees that the encrypted vote either represents a zero
or one, ensuring that only valid binary votes are submitted to the
PBB. This proof is added as𝑀𝑣𝑖𝑑 along the cast-as-intended proof
and the encrypted vote to the ballot. Finally, the ballot is cast to the
PBB.

Step 4 - Tally (Count):
{(
𝐶𝑣𝑖𝑑 , 𝑀𝑣𝑖𝑑 ,𝑉 𝑣𝑖𝑑

)∗
, 𝑠𝑘𝑒

}
→(

𝑇𝑠 ,𝑇𝑜 ,𝑇𝑖
)
.

Before election authorities determine the final tally, the election
must be closed. In order to calculate the final tally, the set of all
triples

(
𝐶𝑣𝑖𝑑 , 𝑀𝑣𝑖𝑑 ,𝑉 𝑣𝑖𝑑

)∗ on the PBB and the election’s private
key 𝑠𝑘𝑒 are required. With homomorphic addition of all valid ci-
phertexts, the total amount of supporting ballots is obtained as
𝑇𝑠 . By subtracting the total supporting ballots from the total num-
ber of ballots received, the opposing vote count is determined as
𝑇𝑜 . Invalid ballots, which are excluded from the final tally (e.g., be-
cause of invalid proofs) are counted as𝑇𝑖 . Thus, the triple

(
𝑇𝑠 ,𝑇𝑜 ,𝑇𝑖 )

represents the final tally 𝑇 .
The stakeholders’ step-wise involvement during the voting proto-

col is detailed in Figure 4. These stakeholders include: The Election
Authorities (A), such as districts or cantons, the Registrar (R), au-
thenticating eligible voters according to the electoral register, the
Voter (V), who desires to submit his or her vote, the voting device,
which is operated by the voter in order to cast a ballot, and the
PBB.

3.5 Implementation
The system is structured into four modules implemented in Rust
[25] (cf. Figure 5). The crypto_rs package provides the arith-
metic primitives for the additive homomorphic ElGamal cryptosys-
tem and the non-interactive zero-knowledge proofs (NIZKP). The
generator_rs package generates the cryptographic parameters
required, such as the private and public UCIV information and the
election public-private key-pair. The node_rs package provides the
PBB BC implementation, whereas the client_rs package provides
the functionality to govern and participate in the election.

4



Figure 4: Involvement of stakeholders in voting protocol steps

Figure 5: System components

In detail, a data structure based on ModInt provides modular
arithmetic operations. The additive variant of the homomorphic
ElGamal ciphertext is defined by𝐺,𝐻 , and the random number 𝑟
used while encryption is performed. In this regard, the encryption,
decryption, and homomorphic additions are implemented as fol-
lows: By defining the message space of all valid plain-text votes
to be in the cyclic subgroup 𝐺 of order 𝑞 of (Z𝑝 )∗, with 𝑞 being
co-prime to 𝑝 and 𝑔 being the generator of 𝐺 . The aforementioned
processes are mapped to the following steps:

(1) Generate a private key by selecting a random number 𝑥 from
the uniformly distributed set

{
1, ..., 𝑞 − 1

}
and keep 𝑥 secret.

(2) Generate the corresponding public key by calculating ℎ = 𝑔𝑥 .
Make the set

(
𝐺,𝑞, 𝑔, ℎ

)
public.

(3) Encrypt a message 𝑚 ∈ Z𝑝 using 𝑟 ∈uniform Z𝑝 with the
public key ℎ by calculating the shared secret 𝑠 = ℎ𝑟 =

(𝑔𝑥 )𝑟 = 𝑔𝑥𝑟 . Then, the resulting ciphertext is defined as
𝐸 (𝐺,𝐻 ) =

(
𝑔𝑟 , 𝑔𝑚 · 𝑠

)
.

(4) Decrypt a ciphertext 𝐸 (𝐺,𝐻 ), by recalculating the secret
𝑠 = 𝐺𝑥 = (𝑔𝑟 )𝑥 = 𝑔𝑟𝑥 and𝑔𝑚 = 𝐻 · (𝑠−1) = 𝑔𝑚 ·ℎ𝑟 · (𝑔𝑥𝑟 )−1 =
𝑔𝑚 · 𝑔𝑥𝑟 · 𝑔−𝑥𝑟 with 𝑠−1 being the modular multiplicative
inverse of 𝑠 . Then, solve the discrete logarithm to obtain𝑚.

After obtaining two ciphertexts 𝐸 (𝑚1) and 𝐸 (𝑚2), the homo-
morphic addition can be performed as follows:

𝐸 (𝑚1) · 𝐸 (𝑚2) = 𝐸 (𝐺1, 𝐻1) · 𝐸 (𝐺2, 𝐻2)
= 𝐸 (𝑔𝑟1 , 𝑔𝑚1 · ℎ𝑟1 ) · 𝐸 (𝑔𝑟2 , 𝑔𝑚2 · ℎ𝑟2 )
= 𝐸 (𝑔𝑟1+𝑟2 , 𝑔𝑚1+𝑚2 · ℎ𝑟1+𝑟2 )
= 𝐸 (𝑚1 +𝑚2)

In order to transform the ElGamal range proof to its non-interactive
form, the Fiat-Shamir heuristic [18] is used. Similar to the range
proof, [17] defines the Cast-as-Intended verification proof in its
non-interactive form. The generator_rs binary is able to generate
all required cryptographic material, such as the private and public
UCIV information and the election key-pair. However, creating a
new ElGamal key-pair is not yet cryptographically safe: As of today,
safe prime generators are unavailable for the BigInt abstraction
used. The prime modulus 𝑝 , its co-prime 𝑞, and the private key
𝑥 are currently hard-coded. The generator_rs represents a best-
effort solution to enable the end-to-end voting process. In addition
to generating an election key-pair, the generator_rs generates a
set of public and secret UCIV information (𝑢𝑐𝑖𝑣𝑠 , 𝑢𝑐𝑖𝑣𝑝 )∗. In the
current implementation, the voting option dependent function 𝜎𝑣
is already applied to the set of secret UCIV information 𝑢𝑐𝑖𝑣𝑠 . Since
the computation of a logarithm of a safe prime is considered com-
putationally expensive in the ElGamal cryptosystem, 𝜎𝑣 represents
the exponentiation function 𝐹 (𝑥) = 𝑔𝑥 as proposed in [17].

node_rs contains the implementation of the PBB as a BC. Thus,
crypto_rs is required as a dependency, providing necessary data
structures to build transactions and blocks. Figure 6 shows its com-
ponents: I BC nodes communicate using the Node RPC interface.
II Votes are submitted to a dedicated Client RPC interface. Two
threads listen to incoming connections, while a thread pool III ex-
ecutes another thread, signing blocks, if the node is a leader or
co-leader. The Clique Protocol Handler IV operates on the
Proof-of-Authority (PoA) level, handling incoming messages and
the corresponding responses, creating transactions and blocks, and
determining whether the node is a leader or co-leader for the cur-
rent epoch. In addition, it holds a transaction buffer V and its own
instance of the actual BC data VI . Since the three threads share

5



Figure 6: The blockchain node’s architecture.

the same instance of the protocol handler, a mutex avoids race con-
ditions. Thus, all threads base decisions on the same BC instance,
also illustrated by the single interface to the Clique Protocol
Handler in Figure 6.

The configuration module contains utilities to read required
configuration parameters, which are used as a genesis block for the
BC. Besides a version flag, the block period for the Clique protocol
[29], the number of blocks each node in the network is allowed to
sign consecutively, the election public key 𝑝𝑘𝑒 . The public UCIV
information 𝑢𝑐𝑖𝑣𝑝 is required to verify the proof of any transaction.
During the runtime instantiation of the Clique protocol, the genesis
block hash is used to identify whether a node in the network is
based on the same configuration. If a configuration value is different,
the hash will also change, and thus, nodes will never agree on the
same canonical chain. In conclusion, nodes with a different genesis
block hash are excluded from communications.

Instead of using a tree-based data structure to build up the chain,
an adjacent matrix is created, containing all block identifiers on the
𝑦-axis and the corresponding children identifiers of the block on
the 𝑥-axis. This ensures an O(𝑁 ) cost when looking up a particular
key. The BC data is stored on the heap.

The p2p module includes the foundation of node_rs: It defines
TCP (Transmission Control Protocol) streams as connection chan-
nels between nodes, a thread pool in which multiple tasks can
be handled concurrently, and a codec transforming incoming and
outgoing messages into their appropriate formats. As shown in
Figure 6, each node_rs instance owns three threads in which the
main operations are applied to a shared instance of the BC: (a) the
Listener Thread responding to incoming node connections, (b)
the RPC Listener Thread answering requests from client appli-
cations, and (b) a thread signing blocks.

Nodes use JSON (JavaScript Object Notation) to exchange in-
formation. Thus, all messages are encoded to JSON by using an
appropriate codec before they are serialized into a byte sequence
and sent over the underlying TCP streams. The serialisation format
can be adapted without influence on the rest of the implementation
of node_rs, since it is defined in a separate package.

Communication between nodes strictly follows the protocol
defined in the Clique Protocol Handler. As clients who are sub-
mitting votes expect different responses than other nodes in the
BC, dedicated interfaces handle interactions, either the Listener
Thread and Rpc Listener Thread, respectively. Transactions re-
ceived by a node in the BC network are always broadcast to other
nodes, regardless of their actual payload. Therefore, not only will
epoch leaders be notified upon receival of a new transaction, their
co-leaders are also notified. Besides the block and transaction broad-
casts, the Clique Protocol Handler can send a full copy of its
own chain to other nodes. During start up, each node will broadcast
a ChainRequest to its other peers, which are defined in the genesis
configuration. On request, a node returns a full copy of its BC data
to the requester, which replaces its own BC data, iff the genesis
hash is equal to its own, and the depth of the canonical chain is
longer than its own. The client side functionality to administer
elections, to submit votes, and to obtain a final tally is accessible
through the client-rs application.

3.6 Vote Administration
Election authorities open and close the election by sending an
OpenVote and CloseVote message to the PBB respectively. Incom-
ing vote transactions are only included in the final tally, if the
election is open. To submit a vote, voters need to be in possession
of the election public key 𝑝𝑘𝑒 and their associated private and pub-
lic UCIV information pair (𝑢𝑐𝑖𝑣𝑠 , 𝑢𝑐𝑖𝑣𝑝 )𝑣𝑖𝑑 , which they received
from the Registrar. Then, they can cast either yes or no, answering
the voting question. The voting choice is transformed to binary (1
and 0) and encrypted on the voter’s client device. The range proof
and the Cast-as-Intended verification proof are generated. Before
submitting the vote to the BC, both proofs are validated on the
voter’s client. Finally, if validation was successful, the vote will be
broadcast to the nodes of the peer-to-peer BC network. Once the
election is closed by the authorities, the final tally can be deter-
mined. By sending a RequestTally to a BC node, a traversal from
the root to the end of its current canonical chain is initiated. Each
block’s vote transactions 𝑇𝑉 are homomorphically summed up. Be-
fore that, each vote transaction is validated with their associated
proofs. If the proof verification fails, the corresponding transaction
is counted toward the invalid vote count. Once the entire canonical
chain is traversed, a response containing the amount of successful,
invalid, and total votes is returned. If no CloseVote transaction is
observed during the traversal of the canonical chain, zero values
are returned for the above parameters.

4 EVALUATIONS
The Cast-as-Intended verifiability allows voters to verify that their
encrypted vote contains the selection they made. By generating
and verifying non-interactive zero-knowledge proofs of knowledge
before submission to the PBB, voters are ensured that the vote is
appropriately encrypted. Considering a scenario, where an adver-
sary distributes a malicious binary to the voter, modifying a binary
to always show a successful Cast-as-Intended verification proof
regardless of the voter’s choice, a voter can always detect such case.
As of today, it is considered the standard that software vendors

6



(a) Voting options (b) Voters

(c) Memory Usage (d) Runtime

Figure 7: Runtime for generating public and private UCIV infor-
mation (𝑢𝑐𝑖𝑣𝑠 ,𝑢𝑐𝑖𝑣𝑝 )∗ as well as storage and runtime evaluations

provide signed binaries and corresponding checksums, which can
be used to verify the integrity of the executed binary.

4.1 Performance and Results
For real-world elections, the performance to generate the crypto-
graphic parameters is essential. Optimally, the runtime is linear
in the number of voters, i.e., O(𝑛) for 𝑛 voters. The runtime com-
plexity is linear to the number of voters (cf. Figure 7a. The time
required to generate the UCIV information behaves linearly in the
number of voting options. Figure 7b shows the linear behavior of
the runtime when generating the UCIV information for multiple
amounts of voters. Based on these numbers, a linear approximation
to generate UCIV information for the average Swiss electorate of
5, 357, 836 eligible voters in 2017[6] leads to an approximate of 743
s (∼ 12 min) for two voting options, 1,069 s (∼ 18 min) for three
voting options, and 1,464 s (∼ 24 min) for four voting options.

Figure 7c indicates the storage requirements to store 10, 100,
1,000, and 10,000 vote transactions 𝑇𝑉 with their corresponding
proofs. The storage is also linear to the number of transactions.
Finally, Figure 7d shows the time required to handle these votes by
the Clique protocol. Since the Clique Protocol Handler verifies,
whether a transaction is already known, the set of known transac-
tions is queried, i.e., the performance is also linear to the number
of transactions.

Thus, obtaining the final tally is achievable in a timely manner:
considering a BC with 10, 90, 900, and 9,000 transactions in consec-
utive blocks: the result of an election can be retrieved in less than
one second.

4.2 Discussion and Limitations
Besides Cast-as-Intended verifiability, Recorded-as-Cast verifiability
can be ensured as well: If a voter obtains the identifier of the trans-
action submitted to the BC, the BC can be queried after the vote’s
submission. Thus, the voter is able to verify the associated proofs
for correctness. Nevertheless, since transactions are not signed with
a voter-dependent value, the integrity verification of the vote be-
comes poor. However, the transaction’s integrity can be verified
by computing the hash of the transaction before its submission to
the BC. Individual verifiability is provided since the voter is able to
query the BC and evaluate it for correctness using the associated
proofs. Counted-as-Recorded verifiability is not yet provided by the
design. However, the voting protocol can be extended with the com-
putation of a non-interactive zero-knowledge proof of knowledge,
proving the correct tabulation, and publishing it to BC as well. Thus,
universal verifiability can be provided by publishing a tabulation
proof of the final tally to the BC.

Although votes are locally encrypted on the voters’ end-user
devices, election authorities are still able to decrypt individual votes,
if there’s a function to query the BC for individual transactions.
As this functionality is necessary to provide Recorded-as-Cast veri-
fiability to voters, it makes sense for election authorities to have
access as well, especially as they provide the infrastructure running
the BC. The risk of vote decryption can be mitigated by using mul-
tiparty computation [17]. Moreover, the confidentiality of the vote
is not broken as the voter id 𝑣𝑖𝑑 is only linked to an identity by the
registrar. As long as the registrar behaves honestly and indepen-
dently from the election authorities, and collusion can be avoided,
ballot secrecy is assured because the link between voter and vote is
only checked for by the registrar.

Once the public and private UCIV information (𝑢𝑐𝑖𝑣𝑠 , 𝑢𝑐𝑖𝑣𝑝 )𝑣𝑖𝑑
set and the election public key 𝑝𝑘𝑒 are obtained, only one step is
necessary to submit a valid vote, which is comparable to casting
a physical ballot via postal mail. With the additional introduction
of electronic identity solutions, the initial complexity of the reg-
istration step for a voter can be reduced because the process can
be digitized and simplified. It is possible that the UCIV informa-
tion (𝑢𝑐𝑖𝑣𝑠 , 𝑢𝑐𝑖𝑣𝑝 )𝑣𝑖𝑑 is obtained over electronic channels (e.g., en-
crypted e-mail) from an independent set of registrars, rendering
printouts for paper-based voting signature cards and paper ballots
fully obsolete.

The Clique Consensus Algorithm can tolerate up to 𝑁
2 − 1 mali-

cious participants [12]. Thus, the voting system can reach consensus
with dishonest election authorities if𝑁 is large enough. Since voters
can query the PBB for their vote submitted, a malicious authority
censoring arbitrary transactions by abstaining from broadcasting
them to other peers can be identified (by querying whether the
transaction was included in the BC). In such a case, voters can re-
submit their vote to another authority and query the PBB for their
vote, being assured that the vote was cast. A non-negligible limita-
tion of this current implementation is caused by the homomorphic
addition of ciphertexts on the BC: The randomness used in each
ciphertext must be provided for correct homomorphic tabulation.
Since this calculation is executed on a node running an instance
of the PBB, the randomness is submitted along with the encrypted
vote and the corresponding proofs to the BC. However, by making

7



this information public, an adversary obtaining confidential infor-
mation can cause a significant shrinkage of the solution space it
has to search through to decrypt a ciphertext.

5 CONCLUSIONS AND FUTUREWORK
This work on Cast-as-Intended verifiability details the implemen-
tation and evaluation of a suitable and operational approach to
provide BC-based electronic voting. With the storage of NIZKPs
on the BC, the Cast-as-Intended verifiability property can be ful-
filled, while at the same time, privacy is maintained. In addition,
tabulation of the final tally is performed directly on the BC, which
distributes trust among multiple authorities.

Concluding, opposing properties of verifiability and privacy also
revealed challenges in providing Recorded-as-Cast and Counted-
as-Recorded verifiability in a distributed setup, i.e., ballot privacy
can potentially be reduced by homomorphic tabulation directly on
the BC. Thus, with respect to the Swiss scenario, further extensions
to the current proof-of-concept implementation are necessary in
order to fulfill the end-to-end verifiability.

Six additional aspects require attention for future work: (a) Per-
forming the homomorphic addition on the BC leaks information
about the randomness of the ciphertexts, thus reducing the solu-
tion space an adversary needs to consider when trying to decrypt
a vote. (b) The current prototype omits authentication of incom-
ing RPC messages. Incoming messages need to be signed with an
asymmetric key-pair by each election authority. Thus, illegitimate
requests can be declined. (c) Consider additional properties to in-
crease verifiability and privacy, e.g., providing everlasting privacy
and coercion-resistance [22] (d) Additionally, multiparty compu-
tation could distribute a composite private key across multiple au-
thorities, requiring a threshold of 𝑘 out of 𝑛 authorities in order to
decrypt any value. (e) Further, the voter ID (𝑣𝑖𝑑) should be replaced
by blinded tokens to reduce the risk of collusion between the regis-
trar and the EA. (f) Lastly, to increase voter privacy, Onion Routing
could be included, where individual votes are first encrypted with
the public keys of multiple authorities, relaying them before they
are included in the BC.

ACKNOWLEDGMENTS
This paper was supported partially by (a) the University of Zurich
UZH, Switzerland and (b) the EU H2020 Program under Grant
Agreement No. 830927 (Concordia). The authors would like to thank
Sarah Jamie Lewis for the feedback on the final version.

REFERENCES
[1] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. 2018. A Survey

on Homomorphic Encryption Schemes: Theory and Implementation. ACM
Computing Surveys (CSUR) Vol. 51, No. 4 (July 2018), pp. 79:1–79:35.

[2] Syed Taha Ali and Judy Murray. 2016. An Overview of End-to-End Verifiable
Voting Systems. arXiv:1605.08554 (May 2016). http://arxiv.org/abs/1605.08554

[3] Josh Benaloh, Matthew Bernhard, J. Alex Halderman, Ronald L. Rivest, Peter
Y. A. Ryan, Philip B. Stark, Vanessa Teague, Poorvi L. Vora, and Dan S. Wallach.
2017. Public Evidence from Secret Ballots. arXiv:1707.08619 (August 2017).
http://arxiv.org/abs/1707.08619

[4] Josh Benaloh, Ronald L. Rivest, Peter Y. A. Ryan, Philip B. Stark, Vanessa Teague,
and Poorvi L. Vora. 2015. End-to-end Verifiability. arXiv:1504.03778 (2015).
http://arxiv.org/abs/1504.03778

[5] Josh Benaloh and Dwight Tuinstra. 1994. Receipt-free Secret-ballot Elections. In
26th Annual ACM Symposium on Theory of Computing, (STOC 1994). pp. 544–553.

[6] Bundesamt für Statistik. 2019. Stimmbeteiligung. http://bcbev.ch/turnout last
visit December 1st, 2019.

[7] Janet E. Burge and David C. Brown. 2008. Software Engineering Using RATionale.
Journal of Systems and Software Vol. 81, No. 3 (March 2008), pp. 395–413.

[8] David Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Commun. ACM Vol. 24, No. 2 (February 1981), pp. 84–90.

[9] David Chaum. 1983. Blind Signatures for Untraceable Payments. In Advances in
Cryptology. Springer US, Boston, MA. U.S.A., pp. 199–203.

[10] Jordi Cucurull, Sandra Guasch, and David Galindo. 2016. Transitioning to a
Javascript Voting Client for Remote Online Voting. In Proceedings of the 13th
International Joint Conference on e-Business and Telecommunications (ICETE 2016).
SCITEPRESS - Science and Technology Publications, Lda, Portugal, pp. 121–132.

[11] Jordi Cucurull, Adrià Rodríguez-Pérez, Tamara Finogina, and Jordi Puiggali.
2018. Blockchain-Based Internet Voting: Systems’ Compliance with International
Standards. In Business Information Systems Workshops - (BIS 2018) International
Workshops, Berlin, Germany. pp. 300–312.

[12] Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lombardi,
Andrea Margheri, and Vladimiro Sassone. 2018. PBFT vs Proof-of-Authority:
Applying the CAP Theorem to Permissioned Blockchain. Italian Conference on
Cyber Security, (CEUR 2018) Workshop (February 2018), pp. 1–11.

[13] Die Schweizerische Bundeskanzlei. vom 13. Mai 2015. Umsetzung von Artikel 50
der Bundesverfassung. http://bcbev.ch/fg. last visit December 1st, 2019.

[14] Die Schweizerische Bundeskanzlei. vom 24. Mai 1978 (Stand am 15. Januar 2014).
Verordnung über die politischen Rechte (VPR). http://bcbev.ch/vpr. last visit
December 1st, 2019.

[15] Die Schweizerische Bundeskanzlei (1). vom 17. Dezember 1976 (Stand am 1.
November 2015). Bundesgesetz über die politischen Rechte (BPR). http://bcbev.
ch/bpr. last visit December 1st, 2019.

[16] Taher Elgamal. 1985. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. IEEE Transactions on Information Theory Vol. 31, No. 4
(1985), 469–472.

[17] Alex Escala, Sandra Guasch, Javier Herranz, and Paz Morillo. 2016. Universal
Cast-as-Intended Verifiability. Lecture Notes in Computer Science 9604 LNCS
(August 2016), pp– 233–250.

[18] Amos Fiat and Adi Shamir. 1987. How To Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Advances in Cryptology (CRYPTO ’86),
Andrew M. Odlyzko (Ed.). Springer, Berlin Heidelberg, pp. 186–194.

[19] Hugo Jonker, Sjouke Mauw, and Jun Pang. 2013. Privacy and Verifiability in
Voting Systems. Computer Science Review Vol. 10 (November 2013), pp. 1 – 30.

[20] Hugo Jonker and Jun Pang. 2011. Bulletin Boards in Voting Systems: Modelling
and Measuring Privacy. Proceedings of the 2011 6th International Conference on
Availability, Reliability and Security, (ARES 2011) (2011), pp. 294–300.

[21] Ari Juels, Dario Catalano, and Markus Jakobsson. 2010. Coercion-Resistant Elec-
tronic Elections. Springer Berlin Heidelberg, pp. 37–63.

[22] Philipp Locher, Rolf Haenni, and Reto E. Koenig. 2016. Coercion-Resistant
Internet Voting with Everlasting Privacy. In Financial Cryptography and Data
Security. Springer, Berlin Heidelberg, pp. 161–175.

[23] Harald Mahrer and Robert Krimmer. 2005. Towards the Enhancement of e-
Democracy: Identifying the Notion of the ‘Middleman Paradox’. Information
Systems Journal Vol. 15, No. 1 (January 2005), pp. 27–42.

[24] Raphael Matile, Bruno Rodrigues, Eder Scheid, and Burkhard Stiller. 2019. CaIV:
Cast-as-Intended Verifiability in Blockchain-based Voting. 1st IEEE International
Conference on Blockchain and Cryptocurrency (ICBC 2019) (May 2019). Seoul,
South Korea.

[25] Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language. In Pro-
ceedings of the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology (HILT ’14). ACM, New York, NY. U.S.A., pp. 103–104.

[26] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. 2017. A Smart Contract
for Boardroom Voting with Maximum Voter Privacy. In Financial Cryptography
and Data Security, Aggelos Kiayias (Ed.). Springer, Cham, pp. 357–375.

[27] Kazue Sako and Joe Kilian. 1995. Receipt-Free Mix-Type Voting Scheme. In
Advances in Cryptology, (EUROCRYPT 1995). Springer, Berlin Heidelberg, pp.
393–403.

[28] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure High-Rate Transaction
Processing in Bitcoin. In Financial Cryptography and Data Security, Rainer Böhme
and Tatsuaki Okamoto (Eds.). Springer, Berlin Heidelberg, pp. 507–527.

[29] Péter Szilágyi. 2017. Clique PoA protocol & Rinkeby PoA testnet. http://bcbev.
ch/eip225. last visit December 1st, 2019.

[30] W3C. 2016. Subresource Integrity, W3C Recommendation. http://bcbev.ch/sri.
last visit December 1st, 2019.

[31] Yifan Wu. 2017. An E-Voting System based on Blockchain and Ring Signature.
Master’s Thesis, University of Birmingham.

8

http://arxiv.org/abs/1605.08554
http://arxiv.org/abs/1707.08619
http://arxiv.org/abs/1504.03778
http://bcbev.ch/turnout
http://bcbev.ch/fg
http://bcbev.ch/vpr
http://bcbev.ch/bpr
http://bcbev.ch/bpr
http://bcbev.ch/eip225
http://bcbev.ch/eip225
http://bcbev.ch/sri

	Abstract
	1 Introduction
	2 Environment
	2.1 Background
	2.2 Related Work

	3 Design and Implementation
	3.1 Assumptions
	3.2 Public Bulletin Board (PBB)
	3.3 Consensus Algorithm
	3.4 Voting Protocol Design
	3.5 Implementation
	3.6 Vote Administration

	4 Evaluations
	4.1 Performance and Results
	4.2 Discussion and Limitations

	5 Conclusions and Future Work
	Acknowledgments
	References

